共查询到20条相似文献,搜索用时 62 毫秒
1.
为了对独立驱动电动车的2个驱动轮的转矩进行协调控制,研究了驱动系统的结构,建立了电动车运动模型.根据电动车的转动平衡,发现电动车在高速转弯时,外侧轮的受力明显高于内侧轮.由于道路状况的变化,当2个车轮分别在摩擦系数不同的路面行驶时,车轮的受力也不同,因此采用神经网络PID控制方法,对2台轮毂式电动机分别进行了控制.通过系统仿真与实验研究,表明该模型及控制方法可以很好地反映电动车在各种工况下的响应特性,提高电动车的运行安全性与稳定性. 相似文献
2.
提出了基于齿轮传动特征和力传感原理的电动汽车轮边减速驱动系统转矩检测新方法,旨在为分布式驱动电动汽车轮边电机的控制提供实时、精确的输出转矩反馈信息.阐明了布置于轮边齿轮减速器轴承端部的偏心套式转矩检测机构的工作原理,根据齿轮机构传力分析,导出轮边电机转矩检测公式;通过仿真分析、样机试制和试验测试,验证所述转矩检测方法的可行性和检测精度的准确性.该转矩检测方法有利于电动汽车驱动电机的高效控制,改善电动汽车的能源利用率和行驶性能. 相似文献
3.
为了提升前后独立驱动四驱电动汽车的综合性能,提出了一种集成前后轴转矩分配和驱动防滑功能的协调控制策略(coordinated control strategy, CCS)。分别设计了基于经济性最优的前后轴转矩分配控制器和基于滑模控制理论的驱动防滑控制器。在此基础上,设计了集成两种控制器工作效能的协调控制策略。与已有集成控制策略不同,提出的策略不是将转矩分配与驱动防滑两种控制功能简单组合,而是在综合考虑车辆的安全性、经济性和动力性条件下进行合理且有效的集成。在常规工况下,车辆默认遵循经济性原则,同时控制器实时监测各车轮的滑移率。当路面条件恶化、无法满足经济性行驶时,在保证安全性的前提下,进行适当的转矩补偿,最大限度地利用路面附着条件,尽可能保障车辆的动力性不受影响。在MATLAB/CarSim环境下对提出的协调控制策略进行仿真验证的结果表明,在加速踏板开度分别为10%、30%、50%时,与传统集成控制策略(traditional integrated control strategy, TICS)相比,所提出的CCS使车辆的动力性能分别提升15.3%、35.6%、4.5%。 相似文献
4.
对某款四轮独立驱动电动汽车转矩分配控制策略对车辆经济性影响进行研究,基于理论与试验数据,建立关键零部件数学模型及整车能耗的MATLAB/Simulink仿真计算模型.以降低系统能耗为目标,提出一种基于驱传动系统效率优化的转矩分配控制策略,得到转矩分配系数MAP图,从而避免了在线计算的时效性问题.不同行驶工况下的仿真结果表明,与固定比例的转矩分配方法相比,基于转矩分配优化算法的系统能耗可降低约5%. 相似文献
5.
传统分布式驱动方案轮边机构结构复杂、簧下质量大,对车辆平顺性和驱动轮接地性产生不良影响.为解决此问题,提出了一种有效减小非簧载质量的一体化单斜臂轮边齿形链驱动系统,对轮边电机、齿形链传动装置与单斜臂悬架进行一体化结构设计与分析.根据整车的设计要求,确定驱动电机的性能参数和齿形链传动的相关参数,在ADAMS中对单斜臂轮边齿形链驱动系统进行了建模、仿真,并利用ADAMS/Insight对车轮定位参数进行了优化. 相似文献
6.
对四轮毂独立驱动电动汽车的协调控制技术进行综述,重点介绍了多目标之间的协调控制以及四轮转矩协调控制的研究方法以及国内外研究现状,提出了当前存在的一些问题,展望了今后的发展趋势。 相似文献
7.
为了改善四轮转向车辆在高速工况下的转向灵敏度不足问题,并提高四轮转向车辆在低附着路面下的稳定性,以主动后轮转向/四轮独立驱动车辆为研究对象,基于分层协调闭环控制策略,设计了主动后轮转向(active rear wheel steering,ARS)和四轮转矩分配(four-wheel torque distri-bution,4WTD)的协调控制系统.首先,以车辆质心侧偏角为控制目标,设计了前馈+反馈的主动后轮转向控制器;然后以车辆横摆角速度和期望纵向车速为控制目标,设计了四轮转矩分配控制器;最后设计了基于规则的协调控制器,合理分配各子控制器的工作区间.通过搭建CarSim/Simulink联合仿真平台,对所设计的协调控制系统进行了仿真验证.仿真结果表明,所设计的协调控制系统达到了提高四轮转向车辆性能的控制目标. 相似文献
8.
对四轮毂独立驱动电动汽车的协调控制技术进行综述,重点介绍了多目标之间的协调控制以及四轮转矩协调控制的研究方法以及国内外研究现状,提出了当前存在的一些问题,展望了今后的发展趋势。 相似文献
9.
结合等长双横臂悬架的特点,分别对用于转向轮和非转向轮的电动汽车轮边驱动机构进行了设计,此机构不但结构紧凑,而且降低了电动汽车的非簧载质量,提高了整车的行驶平顺性。在ADAMS软件下建立了悬架导向机构的参数化模型,以轮距变化最小为目标函数,对悬架导向机构进行了优化设计。 相似文献
10.
以电动轮为主要特征的分布式驱动渐成新能源汽车的主要研究方向,但具有减速机构的轮边驱动系统因引入了电机和减速器,显著增加了非簧载质量,恶化了车辆的操纵稳定性。为此,本文提出了一种将非簧载质量转移为簧载质量的二级减速式轮边驱动系统结构布置方案,并建立1/4车辆三自由度垂向振动系统模型,通过仿真分析验证此种设计方案的有效性。研究结果表明,二级减速式轮边驱动系统能有效抑制车身垂向振动的幅度,降低轮胎动载荷,提高汽车行驶平顺性和轮胎接地性。 相似文献
11.
轮毂电机驱动式微型电动汽车电子差速控制策略 总被引:1,自引:0,他引:1
针对轮毂电机驱动式微型电动汽车的电子差速控制,考虑滑转率和轴荷转移的影响,提出了以驱动轮转矩为控制量,以电动汽车内外侧驱动轮滑转率均衡为控制目标,并考虑汽车转弯时轴荷转移的差速控制策略,进行了差速控制实车试验.试验结果表明,所采用的控制策略合理,控制器能够较好地协调2后驱动轮转矩,实现了汽车电子差速控制. 相似文献
12.
针对电动汽车用轮毂无刷直流电机的转矩控制进行研究,在满足驾驶员需求功率下,对估算得到的电机输出转矩进行闭环控制,达到了电机的目标输出转矩,能简化控制系统、实现准确控制,提高了系统瞬态响应.利用MATLAB/Simulink搭建了车辆行驶在ECE40行车状态时的动态仿真平台.仿真结果显示:建立的电机转矩控制系统能够控制电机满足驾驶员控制车速的需求,且估算到的输出转矩与电机实际的输出转矩较好的吻合,能使轮毂电机高效、稳定、快速地产生电磁转矩,改善了电动汽车驱动系统性能. 相似文献
13.
基于汽车动力学的分析,提出了电动轮驱动系统应遵循的控制原则即输出转矩闭环控制;比较了目前常用的开关磁阻电机转矩控制策略,并提出了新的控制方案.该方案通过放置辅助检测绕组和采用硬件积分器,对电机绕组磁链进行实时检测;结合绕组电流进行转矩估算,经过转矩误差PID反馈控制,实现电机输出转矩对转矩给定指令的跟踪.建立了实际的转矩闭环控制系统并进行了实验研究.实测得到的电机输出特性证明了所提出的控制策略的正确性. 相似文献
14.
基于四轮轮毂电机电动汽车,对固定横摆角速度增益控制问题进行了研究。首先在Car Sim中建立线控转向汽车模型,应用Isight软件对固定横摆角速度增益进行优化设计。根据四轮轮毂电机电动汽车四轮驱/制动力矩独立可控的优势,基于模糊PI控制理论设计了附加横摆力矩决策控制器。采用驱/制动力规则分配方法对四轮驱/制动力进行合理分配;并通过Car Sim与Simulink联合仿真,选取中低车速变车速蛇形试验工况和高速双移线工况对控制方法进行了验证。结果表明:控制后汽车能够很好地跟踪期望横摆角速度,减轻驾驶员转向负担,有效地提高了汽车低速转向灵敏性、高速转向操纵稳定性和转向行驶舒适性。 相似文献
15.
电动汽车CAN总线驱动控制系统设计 总被引:3,自引:0,他引:3
针对电动汽车电驱动系统中存在的关键技术问题,设计了基于CAN(controller area network)总线的电动汽车电驱动系统。系统由CAN通信模块和电机控制模块组成。CAN通信模块采用新型CAN总线收发器TJA1040和独立CAN控制器,并采用各种抗干扰措施以保证CAN通信的稳定性;控制模块利用模糊矢量控制方案——直接速度控制(direct speed control,DSC)策略,实现电驱动系统高鲁棒性控制。系统兼容性强,可以作为单独模块连接到电动汽车的主干网络上,还可以通过CAN总线对其进行扩展。 相似文献
16.
电动汽车驱动用永磁同步电机数字控制系统 总被引:1,自引:4,他引:1
为提高电动汽车的动力性和行驶里程,提出了车用永磁同步电动机数字化控制策略。该策略采用具有参数自调整功能的模糊P1速度控制器来提高系统的动力性和鲁棒性,采用基于空间电压矢量脉宽调制方法设计电流控制器来提高车载电源电压利用率,从而提高电动汽车的行驶里程。基于该策略开发的车用永磁同步电动机数字化控制系统实验结果证明了该策略的有效性。 相似文献
17.
混合动力汽车扭矩管理策略 总被引:15,自引:0,他引:15
能量管理策略是混合动力汽车技术中研究的重要内容之一。该文提出的扭矩管理策略具有稳态能量管理策略的特征。在Matlab/Simulink仿真平台上建立了前向式混合动力汽车模型,并在模型基础上对驱动方式和制动方式下的扭矩管理策略进行了仿真分析。仿真结果表明,扭矩管理策略将扭矩作为最主要的控制变量,以内燃机稳态效率特性图为基础,可以实现对内燃机和电机输出动力的合理分配。扭矩管理策略综合考虑了驾驶员的需求以及混合动力汽车中多个部件的特性,是一种能量的优化管理方法,达到了提高混合动力汽车动力系统效率的目的。 相似文献
18.
为了提高轮毂电机驱动电动汽车行驶稳定性,设计了基于直接横摆力矩控制的车辆稳定性控制系统;针对滑模控制存在固有抖振的问题,建立基于模糊滑模控制理论的稳定性控制器;针对车辆质心侧偏角难以测量,建立了结构简单、计算快速的非线性滑模观测器;考虑到转矩分配的实际约束条件和分配器的响应速度,建立了等比例转矩分配器,分配各车轮上的驱动/制动扭矩。最后基于MATLAB/Simulink与Carsim联合仿真平台进行了仿真分析,结果表明该控制器能很好改善车辆的操纵稳定性,并且控制输出更加平顺。 相似文献
19.
中度混合动力汽车模型预测控制策略 总被引:2,自引:2,他引:2
基于车载导航系统(GPS/GIS)建立汽车未来一段行驶路线上的汽车运行状态模型,将模型预测控制与动态规划相结合,提出了中度混合动力汽车实时在线滚动优化控制策略;并就如何减少动态规划计算量及系统变量离散化问题进行了研究;建立了中度混合动力汽车燃油经济性预测控制仿真模型,采用C语言与MTALAB\Simulink进行联合仿真,验证了所设计的模型预测控制算法可以满足实时控制的要求,且采用该预测控制策略的中度混合动力汽车具有显著的节油效果。 相似文献
20.
电动车用轮毂电机受路面激励和车重的双重作用,定转子相对偏心进而产生不平衡磁拉力,其垂向分量与车辆悬架系统的垂向振动相耦合,影响电动汽车的平顺性、舒适性等性能。针对这一机电耦合问题,以一台永磁式轮毂电机为研究对象,利用磁场叠加法获得负载气隙磁密分布,引入复数相对磁导和偏心磁导修正系数,建立考虑定子开槽效应的电机偏心磁场和不平衡磁拉力解析模型,并通过有限元仿真和样机试验验证了解析模型的有效性。根据悬架系统的垂向振动与电机偏心不平衡磁拉力的实时耦合关系,利用拉格朗日法求解车辆动力学方程,建立1/4车身垂向耦合振动模型。以轮毂电机定子垂向振动加速度、车身垂向振动加速度、悬架动挠度和轮胎动载荷为主要指标,研究机电耦合效应对车辆垂向动力学特性的影响,揭示不平衡磁拉力输出特性与车辆动力学响应之间的机电耦合机理。研究结果表明,机电耦合效应使电动汽车的平顺性、操稳性和安全性等性能总体下降。 相似文献