首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对密度峰值聚类算法进行有效改进,计算各样本点之间的距离和各样本点局部密度,选择两者中较大的样本点作为聚类中心点,根据其余样本点与各中心点的距离设定样本点所属类别;引入K近邻算法对密度峰值聚类算法进行优化,求解各样本点的距离时只需要考虑其周围由邻近值决定的若干样本点,实现距离阈值的自动选取;根据距离矩阵计算样本点的密度,绘制决策图并选择簇内中心点,将剩余点根据密度值分配给离中心点距离最近的类;最后将K近邻-密度峰值聚类算法部署至Hadoop云计算平台,用于解决大规模数据聚类的问题。仿真结果表明,通过合理设置K近邻算法的近邻值k,K近邻-密度峰值聚类算法具有较好的大数据样本聚类性能,与常用聚类算法相比,该算法具有更高的聚类准确率和聚类效率,适用于大数据样本聚类。  相似文献   

2.
针对密度峰值聚类(DPC)算法在处理结构复杂、 维数较高以及同类中存在多个密度峰值的数据集时聚类性能不佳的问题, 提出一种基于K近邻和多类合并的密度峰值聚类(KM-DPC)算法. 首先利用定义的密度计算方法描述样本分布, 采用新的评价指标获取聚类中心; 然后结合K近邻思想设计迭代分配策略, 将剩余点准确归类; 最后给出一种局部类合并方法, 以防将包含多个密度峰值点的类分裂. 仿真实验结果表明, 该算法在22个不同数据集上的性能明显优于DPC算法.  相似文献   

3.
将原始数据投影到一个包含几何一致性和簇分配一致性的空间,并且可以自适应学习几乎所有参数的多视图聚类算法,能够获得良好的聚类效果,但这样做没有考虑多视图中不同样本重要性不同的特点,忽视了噪声点与离群点对聚类效果造成的不利影响.针对上述问题,对样本重要性进行研究,提出一种自适应样本加权的多视图聚类算法.该算法对视图中不同的样本根据其重要性进行加权处理:首先给每个样本分配相同的权重,在之后的每次迭代中,不断进行自适应调整直至达到收敛条件.实验结果表明,该算法可以获得更好的实验效果.  相似文献   

4.
DPC算法是一种能够自动确定类簇数和类簇中心的新型密度聚类算法,但在样本分配策略上存在聚类质量不稳定的缺陷.其改进算法KNN-DPC虽然具有较好的聚类效果,但效率不高而影响实用.针对以上问题,文中提出了一种近邻密度分布优化的DPC算法.该算法在DPC算法搜索和发现样本的初始类簇中心的基础上,基于样本的密度分布采用两种样本类簇分配策略,依次将各样本分配到相应的类簇.理论分析和在经典人工数据集以及UCI真实数据集上的实验结果表明:文中提出的聚类算法能快速确定任意形状数据的类簇中心和有效地进行样本类簇分配;与DPC算法和KNN-DPC算法相比,文中算法在聚类效果与时间性能上有更好的平衡,聚类稳定性高,可适用于大规模数据集的自适应聚类分析.  相似文献   

5.
针对传统K均值聚类算法对初始聚类中心敏感,易陷入局部最优和对大数据集聚类速度慢的缺点,将ARIA与Kmeans算法相结合,提出了一种ARIA-Kmeans算法,即基于自适应半径免疫的K均值聚类算法。首先利用自适应半径免疫算法对数据进行预处理,产生能够代表原始数据分布以及密度信息的内部镜像数据;然后用K均值聚类算法对其进行多次聚类,获得最佳聚类中心,并将其作为初始聚类中心,推广到全部数据优化聚类效果;最后对其结果进行评价。实验结果表明,相对于传统Kmeans算法,新算法在保证聚类准确度的前提下,提高了算法运行的时间效率和稳定性。  相似文献   

6.
目的探索同时确定K-means算法的最佳聚类数K和最佳初始聚类中心的方法,使K-means算法的聚类结果尽可能地收敛于全局最优解或近似全局最优解。方法以次胜者受罚竞争学习(Rival Penalized Competitive Learning,RPCL)作为K-means的预处理步骤,以其学习结果作为K-means的聚类数和初始聚类中心并依据数据集样本自然分布定义样本密度,将此密度引入RPCL的节点权值调整,以此密度RPCL的输出作为K-means的最佳聚类数K和最佳初始聚类中心。采用UCI机器学习数据库数据集以及随机生成的带有噪音点的人工模拟数据集进行实验测试,并用不同的聚类结果评价指标对聚类结果作了分析。结果提出的密度RPCL为K-means提供了最佳的类簇数和最佳的初始聚类中心。结论基于密度RPCL的K-means算法具有很好的聚类效果,对噪音数据有很强的抗干扰性能。  相似文献   

7.
异常检测方法在电力领域有着广泛的应用,如设备故障检测和异常用电检测等.改进了传统Kmeans聚类随机选择初始聚类中心的策略;结合数据对象的密集度与最大近邻半径,选择更加接近实际簇中心的数据点作为初始聚类中心,并在此基础上提出了一种基于改进K-means算法的电力数据异常检测新方法.实验表明,上述算法具有更优的聚类效果和异常检测性能,并且在应用于电力领域时,算法可以有效地检测出异常电力数据.  相似文献   

8.
针对密度峰值聚类算法(DPC)中存在的截断距离难以确定、局部密度定义单一的问题,本文提出了一种基于密度万有引力改进的引力峰值聚类算法(DG-DPC算法)。该算法使用相互K近邻的方法对相似性度量和局部密度进行了重新定义,然后将引力参数引入到DPC算法中,并通过新的相对局部密度与引力参数的倒数作出决策图选取簇中心,对数据集中的点进行分配。仿真实验表明,DG-DPC算法对于人工合成数据集和UCI数据集都有效,且准确率相对于基于相对密度优化的密度峰值聚类算法(RE-DPC算法)、DPC算法、基于间隙自动中心检测的密度峰值聚类算法(GAP-DPC算法)分别平均提高了31.07%、21.60%、17.20%。  相似文献   

9.
密度峰值聚类算法(density peaks cluster,DPC)是一种基于密度的聚类算法,该算法可以聚类任意形状的类簇.在类簇间有密度差距的数据集上,DPC不能准确地选择聚类中心.DPC的非中心点分配策略会引起连续错误,影响算法的聚类效果.模糊k近邻密度峰值算法(fuzzy k-nearest neighbor DPC,FKNN-DPC)是一种改进的DPC算法,该算法采用边界点检测并结合2步分配策略来避免连续错误.当类簇间有密度差距时,FKNN-DPC的边界点检测效果不理想,此外,其非中心点分配策略缺乏对样本近邻信息的考虑.定义相对密度(relative density)并结合近邻关系(nearest neighbor relationship)提出RN-DPC算法解决上述问题.针对DPC因为类簇间的密度差距而不能准确选择聚类中心的问题,定义相对密度用于消除类簇间的密度差距.基于反向k近邻关系检测边界点并且引入共享最近邻关系来对FKNN-DPC的分配策略进行改进.RN-DPC算法在人工数据集和真实数据集上分别与不同的聚类算法进行了对比,实验结果验证了RN-DPC算法的有效性和合理性.  相似文献   

10.
一种基于最大最小距离和SSE的自适应聚类算法   总被引:1,自引:0,他引:1  
K均值聚类是一种常用的聚类算法,需要指定初始中心和簇数,但随意指定初始中心可能导致聚类陷入局部最优解,且实际应用中簇数未必是已知的。针对K均值聚类的不足,文中提出了一个自适应聚类算法,该算法基于数据实例之间的最大最小距离选取初始聚类中心,基于误差平方和(SSE)选择相对最稀疏的簇分裂,并根据SSE变化趋势停止簇分裂从而自动确定簇数。实验结果表明,该算法可以在不增加迭代次数的情况下得到更准确的聚类结果,验证了所提聚类算法是有效的。  相似文献   

11.
为了解决密度峰值聚类算法选择密度峰值点困难以及误分配的问题,基于流形的连通性,提出了一种改进的密度峰值聚类算法。通过使用三支密度峰值聚类算法,得到初始聚类结果与簇的边界点,根据这些边界点之间的连通性判断初始聚类之间的连接情况,并利用这些信息进行聚类结果融合。重复上述过程,每次迭代中在剩余数据里寻找密度峰值候选点,并将其纳入聚类过程,得到一种对流形数据友好的聚类算法。结果表明,所提算法在人工数据集和真实数据集上均有较好的表现,聚类准确度相较现有算法更高。基于连通性的三支密度峰值聚类算法可以在不计算路径距离的前提下,有效识别流形数据,大大降低了计算成本。  相似文献   

12.
陈蓉  李艳萍 《科学技术与工程》2012,12(35):9725-9729
大多数数据挖掘算法都可以对数据进行相对准确的分类,然而他们都集中于单独地使用聚类的方法。所以对于离群点存在的数据集,常常不能得出准确的结果。而COID算法(Cluster-outlier Iterative detection)把簇和离群点巧妙地结合起来,通过它们之间的关系来检测离群点并进行合理聚类。为进一步提高该算法的实用性,现利用prim算法确定初始簇中心,从而降低了迭代次数,实验证明改进后的算法具有更好的可行性、有效性和准确性,适合于高维数据中对于聚类检测的要求。  相似文献   

13.
密度峰值聚类算法(Density peaks clustering,DPC)是一种基于密度的新型聚类算法.该算法的优点十分显著:所需参数较少,没有迭代过程,能自适应获得聚类数目并识别任意形状的簇类.该算法也有一些问题亟待解决:(1)在决策图上人工选择聚类中心,产生聚类误差;(2)在密度不同的流形数据集上聚类效果不佳.针...  相似文献   

14.
一种鲁棒的子空间聚类算法   总被引:2,自引:1,他引:1  
针对聚类分析常面临的维数灾难和噪声污染问题,将样本加权思想与子空间聚类算法相结合,提出了一种鲁棒的子空间聚类算法.该算法结合现有子空间聚类方法,为每个类簇计算一个反映各维度聚类贡献程度的权矢量,并利用该权矢量对各维度加权组合,得到各类簇所处的子空间.此外,算法还为每个样本分配一个反映离群程度的尺度参数,以区分正常样本和离群点在聚类过程中的地位,保证算法的鲁棒性.在二维数据集、高维数据集以及基因数据集上的对比实验结果表明,对于具有不同噪声比例的各种维度数据集,该算法均能取得较高的聚类精度,表现出较好的鲁棒性.  相似文献   

15.
一种改进的全局K-均值聚类算法   总被引:3,自引:0,他引:3  
将快速K中心点聚类算法确定初始中心点的思想应用于全局K-均值聚类算法,对其选取下一个簇的最佳初始中心的方法进行改进,提出选取下一个簇的最佳初始中心的一种新方法.该新方法选择一个周围样本分布相对密集,且距离现有簇的中心比较远的样本为下一个簇的最佳初始中心,得到一种改进的全局K-均值聚类算法.改进后的算法不仅可以避免将噪音点作为下一个簇的最佳初始中心点,而且在不影响聚类效果的基础上缩短了聚类时间.通过UCI机器学习数据库数据以及随机生成的人工模拟数据实验测试,证明改进的全局K-均值聚类算法与全局K-均值聚类算法及快速全局K-均值聚类算法相比在聚类时间上更优越.  相似文献   

16.
K-means算法以其简单、快速的特点在现实生活中得到广泛应用.然而传统Kmeans算法容易受到噪声的影响,导致聚类结果不稳定,聚类精度不高.针对这个问题,提出一种基于离群点检测的K-means算法,首先检测出数据集中的离群点,在选择初始种子的时候,避免选择离群点作为初始种子.然后在对非离群点进行聚类完成后,根据离群点到各个聚类的距离,将离群点划分到相应的聚类中.算法有效降低离群点对K-means算法的影响,提高聚类结果的准确率.实验表明,在聚类类别数给定的前提下,在标准数据集UCI上该算法有效降低离群点对K-means算法的影响,提高了聚类的精确率和稳定性.  相似文献   

17.
针对传统K-means算法的聚类结果依赖初始聚类中心的缺陷,提出了一种基于密度的改进K-means聚类算法,该算法选择位于数据集样本密集区且相距较远的数据对象作为初始聚类中心,实现K-means聚类。针对PAM算法时间复杂度高,且不利于大数据集处理的缺陷,提出了一种基于密度的改进K-medoids聚类算法,在选取初始中心点时根据数据集样本的分布特征选取,使得初始中心点位于不同类簇。UCI机器学习数据库数据集和随机生成的带有噪音点的人工模拟数据集的实验测试证明,基于密度的改进K-means算法和基于密度的改进Kmedoids算法都具有很好的聚类效果,运行时间短,收敛速度快,有抗噪性能。  相似文献   

18.
一种新的密度加权粗糙K-均值聚类算法   总被引:1,自引:0,他引:1  
为了克服粗糙K-均值聚类算法初始聚类中心点随机选取,以及样本密度函数定义所存在的缺陷,基于数据对象所在区域的样本点密集程度,定义了新的样本密度函数,选择相互距离最远的K个高密度样本点作为初始聚类中心,克服了现有粗糙K-均值聚类算法的初始中心随机选取的缺点,从而使得聚类结果更接近于全局最优解。同时在类均值计算中,对每个样本根据定义的密度赋以不同的权重,得到不受噪音点影响的更合理的质心。利用UCI机器学习数据库的6组数据集,以及随机生成的带有噪音点的人工模拟数据集进行测试,证明本文算法具有更好的聚类效果,而且对噪音数据有很强的抗干扰性能。  相似文献   

19.
传统-means聚类算法的性能依赖于初始聚类中心的选择.本文将复杂网络节点的属性值作为节点的度、聚集度与聚集系数的加权值,通过计算所有节点的加权综合聚集特征值,选取综合聚集特征值高,并且彼此之间无高聚集性特征的K个节点作为聚类的初始聚类中心,然后进行聚类迭代过程.实验结果表明,新算法对初始聚类中心的选取更迅速有效,避免了传统K-means算法初始聚类节点选取的敏感性,进而提高K-means算法的聚类质量.  相似文献   

20.
为快速有效地确定聚类中心,提出一种基于距离阈值的自适应K-均值聚类算法.首先确定合理的距离阈值,其次根据距离阈值确定初始聚类中心位置及个数,最后对位置相近的聚类中心簇进行合并,获得新的聚类中心位置及个数.结果表明,该方法可以自动确定k值及中心位置,有效避免将离群点错误聚类,从而改善了聚类效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号