首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 546 毫秒
1.
超临界水密度和自扩散系数预测的分子动力学模拟   总被引:4,自引:0,他引:4  
采用分子动力学方法模拟了温度范围为673.15~873.15 K,压力范围为22.1~131.3 MPa条件下不同状态点水的密度和自扩散系数,并与实验结果进行对比.模拟体系为256个水分子,模拟系综为等温等压系综.模拟结果表明:密度和自扩散系数的模拟预测值与实验值基本一致;密度的模拟预测值大多低于实验值,最大相对误差小于-20 %;自扩散系数的模拟预测值大多高于实验值,但最大相对误差小于±20 %.在缺乏实验数据时,利用单点电荷 (SPC)势能模型,可采用分子动力学方法预测超临界水的密度和自扩散系数.  相似文献   

2.
采用分子动力学方法模拟乙醇/水混合物的扩散性质.模拟中乙醇分子采用点点刚性模型,水分子采用TIP4P模型,在全浓度范围内计算乙醇和水的自扩散系数,分别与实验值和文献的MD模拟值比较.水溶液中,水的自扩散系数描述为结合水分子和自由水分子的综合贡献.计算结果表明,我们采用的乙醇和水的模型对正确描述乙醇/水混合物扩散性质是可行的.  相似文献   

3.
使用蒙特卡罗方法,在计算机上模拟了水分子在水中的自扩散过程,进而估算了水的自扩散系数.通过对1标准大气压、不同温度条件下水的自扩散系数进行计算,并与相同条件下的实验值以及其他文献中的计算值进行对比,发现数值较为接近,说明模拟方法较为成功.同时,研究了模拟的自扩散系数与温度的关系,发现自扩散系数随温度升高而快速增加,与温度的倒数间成负指数关系,这与实验和理论结果符合得很好.  相似文献   

4.
采用EAM势,用分子动力学模拟方法研究了固态Al的自扩散,用2种方法给出了Al在固态下较长的温度区域内的自扩散系数以及自扩散系数随温度的变化规律,并从微观机制上进行了分析和解释,结果较好地符合Arrhenius关系。  相似文献   

5.
基于平衡态分子动力学(EMD)方法,建立了受限空间中的Lennard-Jones(LJ)流体自扩散模型.采用径向分布函数对LJ流体微观结构进行了表征,模拟了LJ流体在纳米尺度受限空间中的自扩散系数,并将其与相应的自由空间内LJ流体自扩散系数进行了比较,同时从分子水平分析了温度、密度和受限尺度对自扩散系数的影响.研究结果...  相似文献   

6.
L-J流体扩散系数的分子动力学模拟   总被引:6,自引:0,他引:6  
采用分子动力学(MD)模拟的方法,计算了模型流体氩及氩/氪溶液的自扩散系数和互扩散系数.计算结果表明,对不同状态下氩的自扩散系数的计算与实验结果符合较好,误差在10%左右;采用Green-Kubo法和Einstein法计算的扩散系数相等.氩/氪溶液的理想性较好,由径向分布函数计算得到热力学因子Q的数值为1.03。  相似文献   

7.
采用分子动力学模拟方法对298 K,0.78 g/cm3的液态甲醇的蒸发潜热、自扩散系数、体系的微观构型、径向分布函数和甲醇分子间的氢键结构进行了模拟研究.结果表明,甲醇的蒸发潜热和自扩散系数的模拟结果与实验数据符合.采用计算机图形技术得到了体系达到平衡时其微观构型的物理图像;对氢键的结构分析表明,形成两氢键的甲醇分子的摩尔分数为77.39%,每一甲醇分子形成氢键的平均数目为1.902;形成氢键的两甲醇分子O…O—H取向角分布曲线在12.2°处出现峰值,取向角θ小于12.2°的甲醇分子的摩尔分数为57.39%,形成氢键的甲醇分子取向几乎呈线性分布;氢键的平均寿命为12.6 ps.  相似文献   

8.
对二氧化碳、水的二元混合流体进行分子动力学模拟,研究了温度、压强、浓度条件变化对二氧化碳水二元混合流体性质的影响.所得计算结果与实验值符合得非常好.分析结果得出,混合物中水的自扩散系数与二氧化碳的自扩散系数随压强增大而减小,混合物中水的径向分布函数受温度、压强的影响较二氧化碳显著,水中的H与二氧化碳中的O形成的氢键作用力随温度增加而增强,随水的浓度增加而减弱.  相似文献   

9.
采用分子动力学方法对不同压强和不同组分下的超临界二氧化碳加共溶剂体系的内能以及径向分布函数和自扩散系数等相关性质进行了模拟.模拟得到体系存在密度涨落现象,但此现象在高压下不明显,指出了体系以共溶剂聚集为主,并从径向分布函数和配位数方面进行了更详细的解释;解释了,共溶剂分子的自扩散系数偏小现象正是由于聚集体的出现抑制了单个共溶剂分子的扩散.  相似文献   

10.
超薄氩膜热传导的分子动力学模拟   总被引:2,自引:1,他引:2  
采用基于经典理论的平衡态分子动力学(EMD))方法,在无量子化修正的条件下,计算了固态氩(Ar)在低于其Debye温度(92K)下的导热系数.温度在20K以上时,模拟结果和实验值吻合较好,说明固态Ar的量子化效应对其热传导性能影响不大,温度低于20K时,由于模拟区域对长波声子的裁剪作用使得模拟结果比实验值低.在此基础上,使用经典分子动力学基于三向、两向周期性边界条件的各向异性非平衡态薄膜模型,模拟了超薄Ar膜在40K的导热系数,2种模型给出了具有相同变化趋势的薄膜热传导特性曲线,即:随着膜厚的增加,导热系数增大,且模拟结果同模拟区域横截面大小无关.在相同条件下,2种模型得到的氩膜导热系数相差10%左右.  相似文献   

11.
本文对不同水模型的甲醇水混合溶液的扩散性质做了研究,模拟所得结果与文献值很接近。甲醇的扩散系数随甲醇质量浓度增加而增大,TIP3P、TIP4P,TIP5P水的扩散系数随甲肆浓度增加而减小,采用TIP4P和TIP5P水模型所得结果与实验值更为接近,TIP3P水模型扩散系数较实验值精有偏低。  相似文献   

12.
采用NVT正则系综对乙醇分子团簇进行了分子动力学模拟.模拟结果表明,外加磁场和温度对乙醇分子簇的影响比较大.同一磁场下,乙醇分子簇的自扩散系数随温度的升高而逐渐增大;同一温度下,随着外加磁场的不断增强体系的自扩散系数逐渐减小.值得注意的是:当磁场增加到0.5T时,298K温度下的自扩散系数变化最为明显.同时,在273K和298K时随着外加磁场的增大乙醇分子簇的径向分布函数的峰值逐渐增大;而在323K时径向分布函数基本重合.  相似文献   

13.
本文采用分子动力学(MD)方法对超临界甲醇体系结构性质和动力学性质进行了模拟研究.结果表明,在超临界条件下甲醇体系因密度涨落存在分子聚集现象,且在低密度区域更明显.与常温常压条件下相比甲醇分子间的氢键作用明显减弱,结构变得松散,分子极性大大降低,自扩散系数上升了十几甚至几百倍.随着压强的增大,甲醇分子间的氢键作用增强,扩散系数减小;随着温度的升高,甲醇分子间的氢键作用减弱,自扩散系数增大,且在接近临界压力时、自扩散系数随温度的变化幅度更大.  相似文献   

14.
利用分子动力学模拟技术考察受限于3种不同材料的纳米孔道(单壁碳管、硼氮管、铁原子孔道)中水分子的静态结构与扩散动力学,计算孔道中水分子沿轴向的自扩散系数Dz,讨论孔道截面尺寸、形状以及组成材料的变化对水分子扩散动力学的影响.结果表明,水分子的轴向自扩散系数随孔道半径的增大而减小,光滑的孔道壁有利于水分子的运输.在3种孔道限制体中,水分子在单壁碳纳米管内的自扩散系数最大.  相似文献   

15.
采用分子动力学模拟方法研究了无定形态A l2O3的结构,讨论了压力对于体系结构的影响。模拟计算了体系的双体相关函数、最近邻配位数、键长值、以及键角分布,并给出了原子水平的瞬时结构图形。计算结果与已报道的实验结果相符,并比以往的模拟更接近实验事实。模拟的结果还得到了键价理论的验证。模拟的无定形态A l2O3结构主要为(A lO4)5-四面体单元,大多数四面体间由一个连接三个四面体的氧原子连接。这与液态A l2O3短程内的结构是一致的。在模拟的范围内,压力对原子的配位数有一定影响。  相似文献   

16.
液态Al2O3结构的分子动力学模拟   总被引:1,自引:0,他引:1  
采用分子动力学模拟方法研究了不同温度、不同压力下液态Al2O3体系的结构,讨论了温度和压力对于体系结构的影响。模拟计算了体系的双体相关函数、最近邻配位数、键长值、以及键角分布,并给出了原子水平的瞬时结构图形。计算结果与已报道的实验结果相符,并比以往的模拟更接近实验事实。模拟的结果还得到了键价理论的验证。模拟的液态Al2O3结构主要为AlO45-四面体单元,大多数四面体间由一个连接三个四面体的氧原子连接。在模拟的温度和压力范围内,发现温度和压力都不对体系结构造成影响。  相似文献   

17.
采用分子动力学方法先分别模拟了单组分的CH_4和C_4H_(10)在二维分子筛ITQ-3中的自扩散系数随负载N的变化。研究表明,在z轴方向的窄孔道中,自扩散系数随负载N的增加两者均表现出先增大后减小的扩散模式,而在y轴方向的宽孔道中,则随负载N的增加单调递减。之后,又模拟了二元组分CH_4和C_4H_(10)混合物在ITQ-3分子筛中随总原子数变化的扩散行为。结果发现,在z轴方向上,当负载N较小时,CH_4的扩散系数随总原子数的增多而增大;当负载N较大时,CH_4的扩散系数随总原子数的增多而减小。在y轴方向上,当负载N较小时,CH_4的扩散同z轴方向一样表现出随总原子数的增多而增大的现象,明显不同于单组分CH_4在y轴方向上的扩散;但随着负载N的增多,在z轴方向的孔道中发生堵塞效应的总原子数在y轴方向的孔道中仍处于过渡状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号