首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
本文介绍了基于用户的协同过滤推荐的算法,并分析该算法的优劣,提出了解决办法。  相似文献   

2.
目前,学术论文的数量呈指数增长,论文推荐也已成为一项有吸引力的研究.论文推荐系统具有一定的重要性和优势.文章通过调查已有的一些论文推荐方法,如基于协同过滤的、图的、混合等方法,并对已有方法进行分析和总结的基础上,指出了目前学术论文推荐研究面临的挑战,以期探索出解决挑战的新思路、新方法.  相似文献   

3.
提出一种基于用户等级的协同过滤推荐算法, 解决了传统协同过滤推荐算法的扩展性问题. 该算法首先定义用户等级函数, 依据用户所评价的项目数确定用户等级; 并通过仅在用户等级的邻域内查找近邻的方法, 提高协同过滤推荐的效率. 实验结果表明, 该算法与传统协同过滤推荐算法相比, 在不影响推荐质量的前提下, 极大地提高了推荐效率.  相似文献   

4.
个性化推荐算法研究   总被引:1,自引:0,他引:1  
随着全球信息总量的爆炸式增长,信息超载问题无法避免且日趋严重化.个性化推荐系统是当前解决信息过载问题的有效技术.该文首先阐述了推荐系统概念定义及其三大组成模块,其次深入分析了个性化推荐算法,详细讨论了当前主流的四大类推荐算法:基于内容的推荐算法、协同过滤推荐算法、基于知识的推荐算法和混合的推荐算法,从多角度对各算法的优缺点进行对比,然后阐述了常用评价方法、评测指标及对测试标准进行分类,并且介绍了常用数据集,最后展望个性化推荐未来研究热点.  相似文献   

5.
改进的个性化推荐算法   总被引:3,自引:0,他引:3  
协同过滤技术是个性化推荐系统中最早也是最为成功的技术之一。但是随着电子商务系统用户数目和商品数目的日益增加,整个项目空间上用户评分数据极端稀疏,传统的CF(协同过滤)方法均存在各自的不足。本文分析了传统cF算法中存在的问题,对其相似性计算方法进行了改进,提出了一种优化的cF算法。实验结果表明,该算法同传统CF算法相比能显著提高推荐精度。  相似文献   

6.
在协同过滤算法的基础上,结合仿生学蚁群算法设计出一种新型的推荐算法.该算法模拟蚂蚁觅食原理,将用户视为"蚂蚁",目标商品视为"食物",利用蚂蚁之间通过信息素的交流来预测用户下一步将要浏览的商品项目.从标准数据集MovieLens上的测试结果表明,相比于传统的协同过滤算法,该算法可有效减少由数据集稀疏带来的问题,提高推荐系统的推荐质量.  相似文献   

7.
汪晔 《佳木斯大学学报》2021,39(6):137-139,166
随着互联网+时代的来临,在线教育平台推荐系统在大数据技术的帮助下,相较于传统教育有着显著的优势.针对数据稀疏性的教育平台的推荐算法,对推荐系统数据的稀疏性问题及架构进行了分析,并对基于二部图的推荐算法进行了优化,最后对基于改进二部图的推荐算法进行了测试分析.结果显示,虽然二部图优化算法稳定性尚不足,但在整体推荐效果上具有一定的优势,二部图优化算法与协同过滤算法相比,在准确率和召回率上的优势,分别要高25%和23%.  相似文献   

8.
在对基于二部分图网络结构的推荐算法NBI和基于Pearson系数的协同过滤推荐算法CF,以及当前广泛应用的完全排序算法GRM进行详细分析的基础上,针对这些算法的局限性,提出了一种基于二部分图的推荐算法.采用Movielens数据库对NBI、CF和GRM以及文中所提算法用2个不同的参数进行了比较.实验结果表明:除了当向每个用户推荐50个电影这一种情况外,文中给出算法的推荐准确率均高于其他3种推荐方法.  相似文献   

9.
提出融合用户评论的协同过滤推荐算法,通过挖掘电商网站的用户评论信息,获取用户评论中的产品特征和意见,通过计算每个特征意见对的极性,得到特征矩阵,结合用户意见质量形成的用户评分矩阵,求出用户评分的相似度.最后结合特征矩阵和用户评分相似度得出目标用户的综合相似度,并由预测评分得出产品推荐表,对用户进行产品推荐.实验结果表明,提出的算法与常用的推荐算法相比,改善了推荐的质量,同时推荐精度得到提高.  相似文献   

10.
在"大数据时代"的背景下,推荐系统能通过分析提取出用户的历史偏好数据,并结合用户之间的偏好关系以及项目与项目的相似程度,推测出目标用户可能喜欢的物品并将其推荐给用户.在当下电子商务时代,推荐系统已成为一种更为活跃、更现代化的信息过滤方式.笔者对推荐系统的研究现状以及主要研究方向进行了系统研究,分析对比了在当下较为流行的各类推荐算法及各自的局限和问题,包括数据的冷启动问题、稀疏性问题、扩展性问题以及推荐性能不高等.最后,总结了目前的推荐系统存在的尚未解决的问题并提出了相应的解决方案.  相似文献   

11.
SVM算法复杂度与样本维数无关,具有的泛化能力强、分类精度高的特点,而LLE是有效的非线性降维方法,本文利用支持向量机(SVM)算法对局域线性嵌入(LLE)算法进行改进,有效地解决了基于内容的图像检索中的高维特征向量的降维问题,实验表明具有较高的查全率和查准率.  相似文献   

12.
协同过滤是推荐系统中应用最成功的技术之一,现有基于项目的协同过滤算法在计算项目相似度时过度依赖用户对项目的评分数据,没有考虑项目间内在的关联性,导致推荐质量不高.为了全面客观地评估项目相似度,提出了一种基于频繁项集挖掘的推荐算法(BFIM).该算法提出将频繁项集作用于相似度计算中,可以提高相似度计算的准确性,进而提升推荐算法的推荐质量.实验结果表明:提出的改进算法较对比算法在公开数据集上能取得更好的推荐效果.  相似文献   

13.
针对传统协同过滤推荐算法的数据稀疏以及用户关系衡量不准确的问题,提出了基于用户非对称相似关系的推荐算法.利用用户的潜在特征的样本数量,结合奇异值矩阵分解,计算用户之间非对称的相似度,明确用户间关系.仿真结果表明,随着邻居数量的增加,该算法的平均绝对误差始终优于传统算法,误差值在邻居数量为40~60之间值为最小,约为0.682,传统算法平均绝对误差值约为0.758,可以看出该算法判断用户关系较为准确,预测评分比传统算法更接近实际评分.  相似文献   

14.
随着互联网的普及以及音乐库的高速更新换代,用户对音乐的需求变得越来越大,传统的推荐算法已经无法满足用户及时准确地寻找到所喜欢的音乐.因此,针对传统音乐推荐算法的不足,通过对协同过滤推荐算法的分析,提出基于内容和协同过滤加权融合的音乐推荐算法.与传统推荐算法及部分相关推荐算法比较,加权融合推荐算法计算出的推荐结果可以更高效快速地将用户感兴趣的音乐推荐出来.  相似文献   

15.
为解决因网络信息严重过载而导致用户获取有效信息困难的问题,笔者提出一种混合式网络信息推荐算法。首先为每个用户建立主题模型,同时应用该算法结合牛顿冷却定率平衡时间因素对用户偏好所产生的影响进行分析,再分别通过改进的协同过滤方法和基于内容的推荐方法满足用户对信息的多样性和个性化的需求。通过 实 践 证 明,该 算 法 在 推 荐 的 准 确 率 和 召 回 率 方 面 表 现 良 好,对 用 户 偏 好 的 预 测 效 果 良好,是有效的推荐方法。  相似文献   

16.
在基于关系图约束的推荐方法中,引入用户图(项目图)约束的目的是保持原始的高维用户表征空间(高维项目表征空间)与低维的隐性用户表征空间(隐性项目表征空间)之间用户关系(项目关系)的一致性.不同于传统的基于关系图Laplacian矩阵的一致性约束,本文提出一种基于关系图邻接矩阵逼近的推荐模型,从相似性空间一致性角度进行约束,在保持高维表征空间与低维隐性空间的一致性关系的同时,可以一定程度上避免局部过拟合问题.在EachMovie与MovieLens数据集上的实验结果验证了本文算法的有效性.  相似文献   

17.
分析了传统CF算法和基于项目评分的CF算法中存在的问题,对其相似性计算和推荐集选取方法进行了改进,并提出了一种优化的CF算法。实验结果表明,该算法同传统CF算法相比能显著提高推荐精度,同基于项目评分的CF算法相比能够有效减少计算复杂度。  相似文献   

18.
针对传统协同过滤推荐算法在用户隐式反馈数据挖掘不够充分、用户兴趣偏好模型过于粗糙,提出一种标签重要程度的协同过滤推荐算法。用户使用标签的种类和频率可以反映用户的偏好和偏好程度;在此基础上建立新的用户兴趣偏好模型,将标签对用户的影响程度进行量化,建立新的相似度计算方法。最后获得目标用户的近邻集合和预测评分,为目标用户实施有效推荐。实验结果表明该算法大幅度提高了推荐的精准度、缓解了冷启动问题。  相似文献   

19.
针对推荐系统协同过滤方法中存在的数据稀疏和冷启动等问题,提出一种基于协同过滤和混合相似性模型的推荐算法。该算法首先计算用户在不同项目间的相似性,然后结合项目特性和标签信息权重来描述用户、项目、特性和标签之间的关系;其次,设定用户偏好因子和不对称因子调整不同用户间的评分偏好;最后,结合用户间相似性、项目综合权重,以及评分偏好构建混合相似性模型,并加入用户时间权重信息解决项目冷启动问题。在公开的MovieLens数据集上的实验表明,该算法在各种评估指标上比其他相关方法获得更显著的结果。  相似文献   

20.
针对网购行为中商品浏览量排名靠前而销量滞后的问题, 在用户购买意愿力的基础上, 提出一种增强评分矩阵协同过滤推荐算法. 首先, 利用惩罚因子作为增强型矩阵的评价权重, 加权表征用户购物意愿力的商品画像, 取得增强型矩阵的预测评分; 其次, 融合以基于项目的协同过滤推荐, 建立由潜在兴趣商品间的项目相似度矩阵得到的基础型评分矩阵; 最后, 以TOP-N结果向购买意愿较强的目标用户推荐排名靠前的商品. 实验结果表明: 与传统基于项目的协同过滤推荐算法相比, 增强评分矩阵协同过滤推荐算法的推荐准确率提升2.48%, 召回率提升4.31%, 综合值F1提升3.19%, 从而有效解决了用户感兴趣商品排名靠后, 且不被购买或购买次数较少的问题, 以达到购买意愿力较强、 目标用户更准的推荐宗旨, 进而提高推荐精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号