共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
新的粒子群优化算法 总被引:7,自引:1,他引:7
粒子群优化(PSO:Partic le Swarm Optim ization)算法是一种有效的全局优化技术。对于PSO算法,很容易陷入局部极值。针对上述缺点,提出了两点改进:对基本PSO算法的速度更新公式中的全局极值给出新的定义,以使粒子群体保持多样性;适当地缩放适应值,与随机规则共同决定某个粒子作为速度公式中的全局极值。改进的两点用于PSO算法后期,形成新的PSO算法(NPSO:New PSO)。NPSO能有效地改善算法,具有摆脱局部极值的能力。在给定的条件下,选用3个函数进行了测试。实验结果显示,在获得平均适应值方面,该算法比PSO算法提高1.62%~16.5%,明显优于基本的PSO算法。 相似文献
4.
5.
多粒子群协同优化算法 总被引:47,自引:0,他引:47
李爱国 《复旦学报(自然科学版)》2004,43(5):923-925
提出一种多粒子群协同优化(PSCO)方法.PSCO是2层结构:底层用多个粒子群相互独立地搜索解空间以扩大搜索范围;上层用1个粒子群追逐当前全局最优解以加快算法收敛.这些粒子群含的粒子数以及粒子状态更新策略不要求相同.为改善粒子群容易陷入局部极小的弱点,提出扰动策略,当1个粒子群的当前全局最优解未更新时间大于扰动因子时,重置粒子的速度,迫使粒子群摆脱局部极小.用Rosenbrock函数等3种基准函数做优化实验表明,PSCO性能优于经典PSO,FPSO和HPSO等算法. 相似文献
6.
在离散系统理论的基础上,研究粒子群优化算法的稳定性,分析了算法各参数的设置区域,指出在该参数区域内算法渐近稳定,粒子群能够收敛到全局最优点. 相似文献
7.
何丽 《长春师范学院学报》2014,(5):21-25
粒子群算法(PSO)是一种基于群智能搜索的优化算法,本文介绍了粒子群算法的基本原理及主要改进方法,分析了PSO与其它主流演化算法融合的研究现状,并结合PSO的应用领用领域展望了PSO的主要发展方向。 相似文献
8.
何丽 《长春师范学院学报》2014,(10)
粒子群算法(PSO)是一种基于群智能搜索的优化算法,本文介绍了粒子群算法的基本原理及主要改进方法,分析了PSO与其它主流演化算法融合的研究现状,并结合PSO的应用领用领域展望了PSO的主要发展方向。 相似文献
9.
粒子群优化算法研究进展 总被引:1,自引:0,他引:1
粒子群优化(PSO)算法是一种源于人工生命和演化计算理论的新兴优化技术.其基本思想为:每个粒子被随机的初始化以表示一个可能的解,并在解空间通过更新迭代搜索最优解.PSO的优势在于算法简单,对目标函数要求少,易于实现而又功能强大.目前,已受到演化计算领域的学者们的广泛关注,并提出了许多改进的算法.本文阐述基本粒子群的原理,给出了各种改进的算法,并展望了PSO的发展方向. 相似文献
10.
三群协同粒子群优化算法 总被引:6,自引:0,他引:6
针对基本粒子群优化算法易陷入局部极值点、搜索精度低等缺点,提出了一种三群协同粒子群优化算法(TSC-PSO)。搜索时,如果全局极值连续若干代没有改善,粒子未找到全局最优点,就任选某个优群,将其群内粒子和差群粒子交换。仿真结果显示,对一些经典多峰值函数、非凸病态函数,TSC-PSO增强了全局搜索能力,具有比基本PSO更好的优化性能。 相似文献
11.
张世勇 《重庆工商大学学报(自然科学版)》2007,24(3):241-245
将禁忌搜索思想引入粒子群优化算法中,改进惯性权重,添加罚函数重新构造适应度函数;在此基础上,提出了一种基于禁忌搜索的新的混合粒子群优化算法(NHPSO),通过4个标准测试函数实验,结果表明:NHPSO算法比基本粒子群优化算法(PSO)具有更好的全局寻优能力、更快的收敛速度以及获得更高精度解的能力。 相似文献
12.
13.
粒子群算法是一种新型的进化计算方法,已在许多领域得到了广泛的应用,但基本粒子群算法在计算过程中易出现过早收敛现象.为此提出了一种改进的粒子群算法,利用差异演化的思想,当陷入局部极小点时,通过一定的策略迫使粒子群摆脱局部极小点.对经典函数的测试计算,验证了方法的正确性和有效性. 相似文献
14.
针对粒子群优化算法由于缺乏种群多样性而导致早熟收敛的不利因素.提出了一种把差异演化算法中的后代产生机制引入粒子群优化算法的更新规则中以保持粒子群的种群多样性和加快收敛速度的算法.这种思想能有效改善摆脱极值点的能力.基于几个高维测试函数的试验结果显示,该算法在收敛速度快和精度方面都优于粒子群优化算法. 相似文献
15.
高春涛 《哈尔滨商业大学学报(自然科学版)》2010,26(4):442-445
粒子群算法是近几年来迅速发展起来的,得到广泛应用的一种新型模拟进化优化算法.研究表明该算法具有简单易于实现,可调参数少等优良性质.对粒子群算法理论及其进展情况做了阐述,介绍了该算法在理论和实际问题中的应用,并对其前景进行了展望. 相似文献
16.
粒子群优化算法的研究 总被引:1,自引:0,他引:1
粒子群优化算法算法原理简单,所需参数较少,易于实现,目前已经应用到很多领域。文章阐述了基本PSO的原理,给出了各种改进技术.并展望了PSO的发展方向。 相似文献
17.
18.
文中提出了基于坐标旋转角的均值粒子群算法,其原理是:在每次迭代中,粒子的下一个飞行位置的方向与当前最好位置的方向之间偏角较大时,则粒子的位置和速度更新中加入一个角度来改变位置和速度的方向,同时角度也更新。通过典型函数优化实验表明,本文算法具有较高的计算精度和较快的收敛速度。 相似文献
19.
唐莉 《中国新技术新产品精选》2010,(20):1-1
粒子群算法适合求解连续变量优化问题,本文提出了粒子群算法的新离散化方法。常规粒子群算法在电力系统优化问题中取得了成功,但有“趋同性”。本文提出了改进多粒子群优化算法(IPPSO),IPPSO是两层结构:底层用多个粒子群相互独立地搜索解空间以扩大搜索范围;上层用1个粒子群追逐当前全局最优解以加快收敛。粒子群以及粒子状态更新策略不要求相同。 相似文献
20.
胡旺等人在2007年提出了一种简化粒子群优化算法,基于他的思想,我们给出一个简化自适应粒子群优化算法,在该算法中权重采用标准粒子群算法的自适应权重公式,但是权重的最大值根据解的进化情况不断更新,解改进的成功率的越大权重最大值增大,反之,解改进的成功率的越小权重最大值减小.最后,通过几个典型例子对给出的算法进行检验并与其... 相似文献