首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 963 毫秒
1.
肖宏 《燕山大学学报》2000,24(4):363-368
介绍了考虑摩擦三维弹塑性接触问题的边界元法和具体的求解步骤,并将其应用于板带轧制过程的模拟。对板带轧制过程中轧辊与轧件的接触变形进行了分析,得到了轧辊弹性压扁、轧件边部减薄以及轧件弹复的分布规律。  相似文献   

2.
1、高液压条件下压缩加工中的摩擦与润滑[日];2、金属成型中摩擦理论计算模型[英];3、钢热轧时的摩擦[英];4、接触弧长及其摩擦系数的分布[日];5、高速轧带钢制时的摩擦研究[俄];6、轧制时摩擦系数与变形力矩计算方法的关系[德];7、工艺润滑对热轧镍铬钢力能参数的影响[俄];8、轧制时轧辊不平度对进入变形区润滑剂的影响(Ⅰ)  相似文献   

3.
轧制过程中,变形区的边界条件很复杂,难以用解析方法准确分析求解,本文尝试用有摩擦弹塑性接触问题边界元法模拟轧制过程,在分析过程中视轧辊为弹性体,轧件为弹性塑性材料在接触边界上考虑了滑动和粘着两种摩擦状态。本文用较少的假设,更准确地模拟了轧制过程,为轧制分析提供了一个有效而精确的方法。  相似文献   

4.
组合式轧辊轧制过程的稳定性分析   总被引:2,自引:0,他引:2  
采用MAC软件计算组合式轧辊辊芯与辊套温度场,建立相应的传热方程与热应力分析模型及其边界条件.研究结果表明:与轧件接触的轧辊表面的温度在开始轧制时迅速上升,随着轧制过程的进行,温度趋于呈稳定周期性变化,温度达到稳定的时间大约为2 h:当轧辊旋转到与轧件接触处,温度达到最高,最高温度约为300℃,此时辊套轧辊结构稳定,据此生产的组合式轧辊在轧制过程中性能优越.  相似文献   

5.
本文用三维弹塑性有限元法模拟了板带轧制过程,分析了轧辊和工件接触时的摩擦特点,提出了双元修正摩擦元刚度理论。利用DI—3000图形软件,开发了二维、三维图形分析程序。结果表明,改进后的摩擦元有较好的稳定性。文中将大量数据自动绘制成二维、三维图形并同现有理论和实验作了分析对比,得到了一些有价值的结论。  相似文献   

6.
一、引言钢在热轧时由于轧辊和轧件之间的摩擦而发生变形,如图1所示。热轧时在正常情况下(具有滑动摩擦时)入口侧带钢运动比轧辊慢;出口侧比轧辊快。接触区内存在一中性点 O,该点处带钢速度与轧辊速度相等。入口处与中性点之间作用的摩擦力其方向与轧辊间的带钢运动方向相同;而中性点与出口侧之间作用的摩擦力其方向与轧制方向相反。该摩擦力差为轧制提供所需之能,因此任何压下量都需要有一定的摩擦力;然而摩擦力过大会造成轧制力和力矩变高。  相似文献   

7.
本文在平面应变条件下,假设轧件为应变硬化的刚塑性体,轧辊为不变形的刚体,轧辊与轧件之间的接触摩擦条件为粘着,即轧辊与轧件之间无相对滑动。用刚塑性有限单元法计算了平板轧制过程的单位压力,金属流动速度和应变、应力分布等,并对接触弧长、刚塑性交界面、前滑系数和中性角等的确定提出新的看法。 有限单元法计算程序是以刚塑性广义变分原理为基础,采用八节点曲边四边形等参单元。根据在四辊轧机上轧制铝板的实测数据,对计算结果进行验证。  相似文献   

8.
本文考虑轧辊和轧件之间的摩擦对轧制压力计算的影响,根据Siebel的摩擦丘假设和W.Kerth的(?)锻附加力假设,利用滑移线场理论和Orowan—Pascoe方法,推导出了存在滑动时热轧轧制压力的实用统一计算公式,可方便地应用于工程计算。  相似文献   

9.
基于神经网络的动态轧制中摩擦因数仿真估算   总被引:1,自引:0,他引:1  
基于多层前馈人工神经网络原理,研究了冷轧机组动态轧制过程中轧辊与轧件间摩擦因数的估算新方法.将轧制过程中摩擦因数视为轧制温度、润滑剂黏度、轧制速度等多参量共同作用的多变量非线性函数,采用神经网络非线性映射功能,构建了摩擦因数与影响参数之间的复杂函数关系的数学模型,提出了轧制过程中动态摩擦因数的神经网络插值逼近算法.同时编制程序进行多参数共同作用下的摩擦因数实例仿真分析,结果表明研究方法的可行性.  相似文献   

10.
横向不均匀润滑轧制理论   总被引:1,自引:0,他引:1  
针对轧辊轴向不均匀磨损及由此带来的板形控制问题,建立了三维弹塑性动态辊系模型,分析了辊件间接触状态及其与轧辊轴向磨损分布间的关系,并由此提出了横向不均匀润滑轧制理论.仿真结果表明,通过改变辊件间横向摩擦因数分布,在保证带钢质量的前提下,实现了辊件间接触压力及摩擦力分布的均匀化,从理论上验证了横向不均匀润滑在改善辊件间接触状态方面起到的积极作用.最后,对横向不均匀润滑轧制理论的可行性进行了分析.  相似文献   

11.
钛合金产品具有优良的性能,应用范围广。然而,该金属轧制成型温度范围窄,在变形过程中极易产生表面裂纹,导致金属损耗严重,产品收得率低。因此,本文基于断裂力学理论,采用有限元软件对TC4钛合金棒材热连轧过程中裂纹损伤进行模拟,通过对比棒材变形区的损伤值,发现在棒材与轧辊接触区域损伤值最大,即在该区域更容易产生表面裂纹;在此基础上,分析了主要工艺参数,包括轧辊偏角、摩擦因数、轧制温度对最大损伤值的影响,发现轧辊偏角的影响最大,且最大偏角不宜超过3. 4°.  相似文献   

12.
棒材热轧过程的三维温度场有限元分析   总被引:1,自引:0,他引:1  
基于有限元分析软件MARC,采用更新的Lagrange法描述的热力耦合大变形弹塑性有限元模型和四面体等参单元技术,考虑接触界面传热,对棒材热轧成形工序进行了三维温度场模拟。模拟结果表明:在轧件开始咬入与轧辊接触后,轧件表面的温度与应力急剧上升;由于接触摩擦与塑性变形功转化为热量,轧件在开始轧制时表面温度升高,进入粘着区后,由于摩擦消失,轧件表面温度略有下降,进入后滑区后,先略有回升接着平缓下降;由表及里,轧件的温度逐步降低。  相似文献   

13.
本文在计算冷轧薄板接触弧长度和轧制压力时,不仅考虑轧辊弹性变形,而且也考虑轧件弹性变形。把变形区分为入口弹性区、塑性区和出口弹性区。应用弹性力学基本方程、塑性条件和平板压缩理论导出了入口弹性区和出口弹性区单位宽度轧制力公式及塑性区平均单位压力公式。应用弹性接触理论和变形区的几何关系导出了计算冷轧薄板接触弧长度公式。最后给出了考虑轧辊和轧件弹性变形时计算冷轧薄板的总的轧制力公式。本文公式比目前广泛采用的Bland—Ford公式和M.D Stone公式简便,不用迭代和查表能直接计算出接触弧长度和轧制压力,因此计算精度较高。不仅适用于一般工程计算,而且也能为在线控制的电子计算机提供较为精确的轧制力数学模型。  相似文献   

14.
建立了四辊轧机工作辊和支撑辊之间接触和弯曲耦合问题的一种非线性力学模型,该模型充分考虑轧辊的接触变形和轧辊弯曲变形之间的相互影响,能更好地模拟轧辊在轧制力作用下的力学特性,采用修正迭代法求解,得到了轧辊的弯曲变形、挤压变形、接触压力、接触宽度以及它们之间相互关系等一系列结果,该模型可用于板形控制、轧机振动等问题的研究中。  相似文献   

15.
确定冷轧带钢轧制力时,必须考虑在变形区中因轧辊弹性压扁而使变形区长度增大这一因素。尤其是,当变形抗力超出50公斤/毫米~2时,在接触变形区中轧辊辊面产生的弹性压扁是不容忽视的,有时它能使接触变形区长度与不考虑压扁时的相比增长一倍以上。往往由于不能准确的决定出接触变形区长度,而得不到比较可靠的轧制力能参数,从而影响正确的进行设备设计和工艺制度的制定。早在三十年代,J.Hichcock[1]就提出了计算考虑轧辊弹性压扁时接触变形区长度和  相似文献   

16.
变形速度是轧制中的一个重要因素.导出粘着摩擦和滑动摩擦两种情况下,轧制变形速度的表达式.计算结果表明,粘着摩擦和滑动摩擦变形速度在轧件开始咬入附近处变形速度最大;在轧件与轧辊分离处,变形速度为零,在这点附近粘着摩擦和滑动摩擦变形速度值接近相等,摩擦系数几乎不影响滑动摩擦情况下的变形速度.  相似文献   

17.
变形速度是轧制中的一个重要因素。导出粘着摩擦和滑动摩擦两种情况下,轧制变形速度的表达式。计算结果表明,粘着摩擦和滑动摩擦变形速度在轧件开始咬入附近处变形速度最大;在轧件与轧辊分离处,变形速度为零,在这点附近粘着摩擦和滑动摩擦变形速度值接近相等,摩擦系数几乎不影响滑动摩擦情况下的变形速度。  相似文献   

18.
在生产中广泛地推广工艺润滑轧制是改进型钢轧制工艺、改善轧材质量以及提高轧机生产率的远景方向之一。日丹诺夫冶金学院和顿湟茨冶金工厂曾在热轧型钢时,采用固体润滑剂进行了研究(在实验室和生产条件下)。实验室条件下,在300轧机上热轧扁钢时,研究了以合成蜡为基(Ty 33—30705—70)配制的23种工艺润滑剂,这种合成蜡是便宜的石油加工产品,含有少量挥发物,热轧时实际上不冒烟,因此不会恶化劳动的卫生条件。当这种合成蜡基润滑剂与旋转的轧辊接触时,轧  相似文献   

19.
轧制工艺润滑能有效减少轧制力,降低能耗,但是在H型钢轧制过程中引入工艺润滑造成了翼缘宽展不均、腹板偏心等缺陷。针对H型钢工艺润滑生产中遇到的问题,建立了H型钢万能轧制过程的有限元模型,对轧辊各部位不同摩擦分布情况进行了仿真模拟,深入研究了轧制润滑影响H型钢翼缘宽展的机理。通过分析不同工况条件下轧件变形区内的摩擦力分布、金属流动等因素,解释了翼缘宽展的机理并得到了翼缘宽展的规律。分析结果表明,对H型钢腹板进行轧制工艺润滑能有效减少轧制力、降低能耗;在其它工艺参数一定的情况下,翼缘宽展随翼缘及轧辊间的摩擦系数增大而减小,且基本上呈线性关系;在翼缘的二个表面中对内侧的摩擦系数更为敏感。现场工艺润滑方案设计时应充分考虑宽展对润滑轧辊不同位置时的敏感性差异。  相似文献   

20.
基于Christensen的表面粗糙峰分布假设,以轧制理论、流体力学理论为基础建立了考虑表面粗糙度的冷轧混合润滑模型,并提出了混合润滑摩擦状态约束关系式用来判别摩擦状态.对不同条件下油膜厚度、接触面积比、压应力及摩擦应力分布情况进行了仿真分析.结果表明:随着压下率的增加,油膜变薄、界面接触面积比增加、应力增大;同时,表面粗糙度对界面接触面积比及应力分布有较大影响,粗糙度增加,界面接触面积比增加,压应力及摩擦应力均增加.较高的润滑液黏度或轧制速度可以有效地降低轧制界面摩擦力及轧制力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号