首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为了揭示含泥量对聚羧酸减水剂分散能力的影响,试验选择净浆流动度和黏度两个指标,研究泥对掺聚羧酸减水剂水泥浆体流变性质的影响,并利用IR、UV手段分析确定了泥的滤液对聚羧酸减水剂分子结构的影响及碱性环境中聚羧酸减水剂在泥颗粒表面的吸附规律。结果表明:当泥取代水泥质量的15%时,聚羧酸减水剂由于泥的存在已无分散效果;增大聚羧酸减水剂掺量可以提高含泥水泥浆体的分散性;泥的滤液不会改变聚羧酸减水剂的分子结构、对聚羧酸减水剂的分散能力无不利影响;在饱和石灰水模拟的碱性环境中,泥对减水剂的吸附很快,初始时间里(6 min内)泥就已经充分吸附了聚羧酸减水剂,泥对聚羧酸减水剂的吸附量为水泥的4倍左右。  相似文献   

2.
采用聚乙二醇400(PEG400)合成了一种新型抗泥功能单体(FM),并将其引入到聚羧酸减水剂(PCE)的分子结构上,制备了几种抗泥型聚羧酸减水剂(AC-PCE)。采用傅里叶红外光谱(FT-IR)对FM和PCE进行表征,分别通过净浆流动度和砂浆流变性试验考察PCE在含蒙脱土(MMT)水泥净浆和水泥砂浆中的分散性能,并研究了PCE在MMT上的吸附特性。结果显示,与不含FM的聚羧酸减水剂相比,AC-PCE减少了在MMT上的吸附量,抑制了MMT的插层吸附,降低了含MMT水泥净浆经时流动度损失以及含MMT水泥砂浆的屈服应力。研究表明,AC-PCE具有良好的抗泥性能。  相似文献   

3.
通过水溶液自由基聚合法合成了含有不同官能团的聚羧酸减水剂,并研究了不同结构聚羧酸减水剂的吸附-分散性能,以及其对水泥水化性能的影响.结果表明:含酰胺基的聚羧酸减水剂对水泥浆体流动度的削弱程度最大,含酯基官能团的聚羧酸减水剂对水泥浆体流动度的影响程度较小.含磺酸基团的聚羧酸减水剂吸附性能增强;而含酰胺基及酯基的聚羧酸减水剂的吸附性能削弱.含酯基官能团的聚羧酸减水剂显著延缓了水泥水化诱导期,相比之下,含磺酸基官能团的聚羧酸减水剂提高了水泥水化加速期的最大水化放热速率.  相似文献   

4.
试验研究了水泥净浆的流变曲线、颗粒堆积密实度、间隙液黏度和聚羧酸减水剂(polycarboxylate superplasticizers,PCE)的吸附量,探究了相同流动度下PCE分子量对水泥净浆流变性能的影响及其内在机理.结果表明:PCE存在一个最佳的分子量范围,使得处于该范围的PCE具有最强的分散能力.在选取的4种PCE中,重均分子量为29.582 kg/mol的PCE减水剂的分散性能最佳.由于桥接作用的存在,分子量大的PCE需要更多地吸附在水泥颗粒表面,以增大颗粒间距,使得浆体的屈服应力(流动度)基本相同.此时,浆体的剩余黏度主要受颗粒堆积密实度与固相体积分数的影响,呈现出随PCE分子量增加而逐渐降低的变化规律.  相似文献   

5.
采用水溶液自由基共聚的方法合成聚羧酸高效减水剂, 并通过红外光谱确定了聚羧酸高效减水剂的结构, 考察了聚羧酸高效减水剂侧链的长度、
减水剂在水泥中的掺量、 测试温度等对水泥净浆流动度的影响. 结果表明: 长侧链比短侧链的减水剂流动性更好; 减水剂在水泥中的掺量为其质量分数的0.2%; 随测试温度的升高, 水泥净浆流动度反而降低. 将新合成的聚羧酸高效减水剂与国内外常用产品进行比较, 结果显示性质优良.  相似文献   

6.
为探究泥粉和聚羧酸减水剂对水泥净浆流变性的影响,在掺入聚羧酸减水剂母液和两种复配助剂的基础上,分别外掺1%,2%,3%的高岭土型和蒙脱土型泥粉,并采用Bingham流变模型系统地研究泥粉掺量、种类和聚羧酸减水剂助剂对水泥净浆屈服应力及塑性粘度的影响规律.通过X射线(XRD)小角度衍射、总有机碳(TOC)、Zeta电位对宏观试验结果进行验证.结果表明:增大泥粉掺量可降低聚羧酸减水剂水泥净浆的流变性;高岭土型普通黏土对降低聚羧酸减水剂水泥净浆流变性的程度小于蒙脱土型膨润土;异戊烯基聚氧乙烯醚(TPEG类)保坍型助剂F1对水泥净浆流变性的促进作用大于异丁烯基聚氧乙烯醚(HPEG类)减水型助剂F2.  相似文献   

7.
利用Box-Behnken实验设计(BBD)方法研究水溶性聚合物(聚乙烯醇(PVA)、聚丙烯酰胺(PAM))和化学添加剂(有机硅消泡剂(SD)、聚羧酸减水剂(PC))复配对水泥砂浆抗压强度的影响,得出能反映化学组分掺量与水泥砂浆强度关系的二次方程、化学组分与水泥砂浆强度的帕累托图(Parrot)。结果表明:聚乙烯醇对水泥1 d砂浆强度的贡献最大,随着龄期的增长,作用逐渐减小。聚丙烯酰胺对强度的影响主要体现在28 d,聚羧酸减水剂的作用主要体现在3 d。此外,有机硅消泡剂和聚丙烯酰胺的交互作用存在于整个水化过程中,而有机硅消泡剂和聚羧酸减水剂的交互作用主要体现在3 d前。  相似文献   

8.
分别以丙烯酸羟乙酯(HEA)、丙烯酸羟丙酯(HPA)、衣康酸二甲酯(DEI)、富马酸二甲酯(DMF)作为功能小单体,丙烯酸和甲基烯丙基聚氧乙烯醚(HPEG)为主要原料,在氧化-还原体系下,成功制备了一系列缓释型聚羧酸减水剂(PCE)。采用红外光谱(FTIR)、核磁共振氢谱(1H NMR)等对目标产物的结构进行了表征。根据水泥净浆的流动性对比结果,确定了合成的减水剂在不同时间所达到的最大流动度,考察了不同酯类单体对聚羧酸减水剂的缓释性及分散保持性能的影响,并测试了水泥浆体的Zeta电位、PCE的吸附行为。结果表明: DEI的缓释效果优于HEA和HPA,水泥浆流动度在2 h内从190 mm达到255 mm,大大延长了减水剂PCE在水泥表面的吸附时间和流动度保持时间,在实际应用中具有良好的参考意义和应用前景。  相似文献   

9.
聚羧酸高效水泥减水剂的合成及性能   总被引:2,自引:0,他引:2  
采用先酯化后共聚的方法合成聚羧酸系减水剂,考察以甲基丙烯酸(MMA)和甲氧基聚乙二醇(MPEG)为原料酯化合成大单体甲氧基聚乙二醇甲基丙烯酸酯(MPEGMA)过程中阻聚剂对苯二酚用量、酸醇摩尔比、反应温度等对酯化率的影响.以大单体MPEGMA与马来酸酐、MMA和2丙烯酰胺基2甲基丙烷磺酸共聚合成聚羧酸类减水剂,考察减水剂合成过程中MPEG相对分子质量和引发剂过硫酸铵用量以及减水剂掺量对减水剂性能的影响.结果表明:阻聚剂质量分数为0.4%、酸醇摩尔比为1.5:1、反应温度为120℃时,酯化率可达到92.3%.当MPEG相对分子质量为1000、引发剂的质量分数为5%,合成的减水剂掺量质量分数为0.3%时,水泥的净浆流动度可达281mm.  相似文献   

10.
采用净浆流动度、ζ电位、总有机碳(TOC)、红外光谱等实验,研究粉煤灰中氧化铁含量对不同结构聚羧酸减水剂吸附性能的影响,探讨氧化铁影响聚羧酸减水剂对水泥分散性能的机理,并提出了相应改进方法.结果表明:粉煤灰中氧化铁含量对掺不同结构聚羧酸减水剂的水泥净浆流动度均有很大影响,当氧化铁质量为粉煤灰总质量的18%时相应浆体基本失去流动性;加入硫化钠能使氧化铁与聚羧酸减水剂的吸附性能降低,浆体流动度有所改善.高氧化铁粉煤灰对聚羧酸减水剂的吸附性很强,与普通Ⅱ级粉煤灰相比,外加剂溶液中有机碳的含量要减少1/3.电泳实验表明:氧化铁的含量越多,体系ζ电位绝对值越小,分散稳定性越差.红外光谱表明:硫化钠的加入降低了高氧化铁粉煤灰对聚羧酸减水剂的吸附.  相似文献   

11.
采用水溶液聚合法,将烯丙基聚乙二醇(APEG)与丙烯酸(AA)、丙烯酰胺(AM)、甲基丙烯磺酸钠(MAS)共聚合成聚羧酸系减水剂,探讨了AA与APEG的摩尔比、AM与APEG的摩尔比、MAS与APEG的摩尔比、反应浓度、加料方式、引发剂用量(相对于所有单体质量和的百分比)、共聚温度和反应时间对所合成聚羧酸系减水剂性能的影响.结果表明:采用最佳合成工艺参数制备的减水剂在掺量仅为水泥用量的0.8%(质量分数)时就具有良好的减水率、保坍性.  相似文献   

12.
聚醚接枝聚羧酸系高效减水剂合成   总被引:1,自引:0,他引:1  
采用烯丙基聚氧乙烯醚(APEG)、甲基丙烯酸(MAA)、马来酸酐(MA)以及甲基丙烯磺酸钠(MAS)为单体,以过硫酸铵为引发剂,在水溶液中共聚合成聚醚接枝的聚羧酸系减水剂.考察单体摩尔比、引发剂用量、聚合温度以及聚合时间等因素对减水剂分散性能的影响.研究结果表明:最佳合成工艺条件为n(MA)∶n(MAA)∶n(APEG)∶n(MAS)=2.5∶3.0∶1.0∶0.5,引发剂用量为单体总质量的5%,聚合温度为90℃,反应时间4~5 h,合成的减水剂其水泥净浆流动度可达235 mm,说明研究合成的聚羧酸系减水剂对水泥具有较好的分散性.  相似文献   

13.
系统研究了硫酸盐对掺聚羧酸减水剂水泥浆体流变性及水化性能的影响.结果表明:硫酸盐降低了聚羧酸减水剂在水泥颗粒表面的吸附量,削弱了聚羧酸减水剂对水泥浆体的分散作用.随着硫酸盐掺量的增加,聚羧酸减水剂分散性能下降.少量硫酸盐延缓了水化加速期最大水化放热速率峰的出现,并且提高了最大水化放热速率.而大量硫酸盐则使得水泥水化诱导期缩短,最大水化速率峰显著提前.大量硫酸盐的加入促进了水泥浆体中钙矾石(AFt)的生成,削弱了水化铝酸钙(CAH)的生成.MgSO4对于水泥浆体中水化产物生成的促进作用最明显.掺加MgSO4的水泥水化产物中含有大量细丝状水化硫铝酸盐产物.MgSO4对水泥水化具有显著延缓作用,水化产物结晶成核作用较缓慢,从而使得水化产物生成及分布更加均匀,形状更加细小.  相似文献   

14.
系统研究了硫酸盐对聚羧酸减水剂吸附-分散性能的影响及其作用机理.通过净浆流动度试验及Marsh时间试验研究了硫酸盐种类及掺量对聚羧酸减水剂分散性能的影响,并通过zeta电位、平衡吸附量及絮凝结构形貌等微观测试手段对硫酸盐影响聚羧酸减水剂分散性的作用机理进行分析.结果表明:随着硫酸根溶出率及溶出速率的增加,硫酸根离子与聚羧酸减水剂间的竞争吸附作用增强;硫酸根离子破坏浆液双电层,促使zeta电位绝对值下降,从而削弱水泥颗粒表面的静电斥力作用,导致水泥浆体絮凝结构数量及强度增大,相同剪切速率对浆体中的絮凝结构破坏程度下降,浆体分散性及流变性下降.  相似文献   

15.
在聚羧酸减水剂(PCE)制备过程中引入纳米二氧化硅(NS),研究了纳米二氧化硅改性聚羧酸减水剂(NSPCE)的合成条件,并探讨了所合成NS-PCE对水泥净浆流变性能的影响。利用激光粒度分析仪、紫外分光光度计等手段对NS-PCE进行表征,发现NS纳米颗粒可接枝到PCE分子链上,且适量NS的掺入可促进异戊烯醇聚氧乙烯醚(TPEG)单体的转化;随着NS用量的增多,NS-PCE的粒径先增大后保持平稳。NS-PCE较佳合成工艺条件为:合成温度30℃,酸醚比3. 3,NS用量为TPEG质量的10%,氧化剂用量为TPEG质量的0. 15%,链转移剂用量为TPEG质量的0. 35%。合适NS接枝量的NS-PCE可降低水泥浆体屈服应力,从而改善水泥浆体的流变性能。  相似文献   

16.
以2-甲基烯丙基聚氧乙烯醚(HPEG)和丙烯酸(AA)为单体、H_2O_2/抗坏血酸(H_2O_2/VC)为引发体系、巯基乙酸(TGA)为链转移剂合成聚羧酸减水剂。通过正交试验研究6个因素对减水剂分散性能及保持性的影响,并通过单因素研究修正,利用傅里叶变换红外光谱(FT-IR)和核磁共振氢谱(~1H-NMR)对减水剂进行结构分析,利用凝胶色谱(GPC)测得合成减水剂分子量。结果表明:最佳工艺为在常温下(15~35℃),n(HPEG)∶n(AA)∶n(H_2O_2)∶n(VC)∶n(TGA)=1∶4. 2∶0. 40∶0. 015∶0. 10,物料滴加时间2 h,然后再反应2 h。减水剂数均分子量为44 167,分子结构的侧链聚合度为54. 66,主链聚合度为15. 89,接枝密度为23. 81%。在折固掺量为0. 15%时,水泥初始净浆流动度为285 mm,1 h后水泥净浆流动度为273 mm,净浆初凝时间由180 min缩短至170 min,终凝时间由260 min缩短至240 min,胶砂减水率达33. 4%,表明所合成聚羧酸减水剂分散性能优异。  相似文献   

17.
聚羧酸系高效减水剂的合成   总被引:2,自引:0,他引:2  
以丙烯酸、甲基丙烯酸、甲氧基聚乙二醇、聚乙二醇、甲基丙烯磺酸钠等为主要原料,以过硫酸铵为引发剂合成了聚羧酸系减水剂.同时采用正交试验确定了合成产品的比较合适的配比.实验结果表明,当减水剂的掺量为1%,水灰比为0.35时,水泥静浆流动度超过290 nm,减水率超过了国内同类产品的水平.通过红外光谱分析表征,合成产品的分子结构与设计的分子结构相吻合.  相似文献   

18.
以净浆流动度作为水泥与减水剂相容性的评价指标,试验研究了多种助磨剂对水泥与萘系减水剂或聚羧酸减水剂相容性的影响规律,探讨了缓凝剂和引气剂对水泥与减水剂相容性的改善作用。结果表明,助磨剂对水泥与萘系减水剂相容性的影响较大,对水泥与聚羧酸减水剂相容性的影响较小。缓凝剂和引气剂均能改善水泥与萘系减水剂的相容性,随其掺加量的增加,改善作用逐渐增大。含缓凝剂/引气剂的复合助磨剂对水泥净浆流动度有一定的改善作用,并延缓水泥的凝结时间。含缓凝剂的复合助磨剂对水泥有增强作用,而含引气剂的复合助磨剂会降低水泥的胶砂强度。  相似文献   

19.
一种新型聚羧酸系高效减水剂的实验研究   总被引:2,自引:0,他引:2  
采用丙烯酸、甲基丙烯磺酸钠、烯丙醇聚氧烷基醚三元共聚得到一种新型聚羧酸类减水剂.这种不通过酯化大单体直接共聚且不含酯基的聚羧酸减水剂同样具备较高的减水率和扩散性能.结果表明,该聚羧酸类减水剂对水泥具有高度的分散作用,当含固量30%、掺加量1%、水灰比为0.29时,净浆流动度可达270 mm.综合各项技术指标,通过混凝土性能实验表明这种减水剂的性能满足高效减水剂要求,且主要性能指标优于GB8076-1997《混凝土外加剂》标准要求.  相似文献   

20.
以活性大单体聚乙二醇单甲醚甲基丙烯酸酯(MPEGMA)、甲基丙烯酸、马来酸酐和烯丙基磺酸钠为原料,在水溶液中共聚合成聚羧酸系混凝土高效减水剂.考察了单体的摩尔配比、引发剂种类和用量以及甲氧基聚乙二醇(MPEG)分子量等合成条件对减水剂性能的影响.结果表明,最佳的减水剂合成条件为:马来酸酐、MPEGMA、甲基丙烯酸和烯丙基磺酸钠摩尔比为3:4:1:2,引发剂过硫酸铵用量为单体总质量的2.0%,MPEG分子量为1 300.在上述条件下制备得到的聚羧酸减水剂具有良好的分散性和保塑性,掺入该减水剂0.3%(质量分数)的水泥净浆流动度可达到290 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号