首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
目的研究高温质子交换膜(HT-PEM)燃料电池阴极氧还原反应特性,分析不同温度对反应系统能量、键长、键角和反应粒子运动速度的变化规律.方法建立HT-PEM燃料电池阴极催化剂Pt(1 1 1)表面及氧分子模型,运用分子动力学原理,根据密度泛函理论和第一性原理,模拟HT-PEM燃料电池阴极氧分子在催化剂Pt(1 1 1)表面的吸附和4个氢离子依次与氧分子反应等过程.结果氧分子的吸附和第1个氢离子与氧分子反应的时间最长;反应生成物水分子的键长为0.099 nm,H-O-H键角为104.5°,与实际测量值相符.结论各步反应中,键长达到平衡需要的时间比键角达到平衡需要的时间短;随着温度的提高,各个反应粒子运动速度加快,系统能量达到平衡时需要的时间缩短,导致电化学反应速度提高.  相似文献   

2.
通过分析钛酞菁(TiPc)、铁酞菁(FePc)、钴酞菁(CoPc)、铜酞菁(CuPc)和镍酞菁(NiPc)5种过渡金属酞菁配合物(TMPcs)的O_2吸附能、OH吸附能、H_2O_2吸附能和H_2O吸附能,发现TMPcs的氧还原能力与O_2吸附能有一定关系,O_2吸附能越大,其氧还原反应催化能力越强.基于密度泛函理论(DFT)和量子力学原理,计算了TiPc的相关吸附能,结果显示:在5种TMPcs中TiPc的O_2吸附能力最强;TiPc的O_2吸附能大于其OH吸附能;TiPc的O_2吸附能远大于其H_2O吸附能.在分析TMPcs反应机理的基础上,根据氧还原反应中吉布斯自由能的变化,比较TiPc、FePc、CoPc和Pt作为催化剂的4种情况,理论计算结果表明,TiPc作为催化剂的氧还原反应过程中没有明显的能垒,且速率控制步骤的能垒为零.由此可得,TiPc的氧还原催化能力优于已有实验结果的其他TMPcs和Pt,有可能替代Pt作为质子交换膜燃料电池(PEMFC)的氧化还原催化剂.  相似文献   

3.
采用海藻酸铵辅助法制备了Sn杂化Al_2O_3球形颗粒,并通过浸渍法获得Pt/Snx-Al_2O_3-X催化剂.采用氮吸附-脱附、XRD、NH3-TPD、XPS与TEM,研究了Sn杂化量与煅烧温度对催化剂孔结构、晶相、表面酸性、Sn价态、催化剂表面Pt颗粒大小的影响,并评估了催化剂在丙烷脱氢过程中的反应活性.实验结果表明,Sn的引入没有改变γ-Al_2O_3的晶相,但是可以提高催化剂的热稳定性;随着煅烧温度的提高,催化剂孔容、孔径明显增加,而比表面积与表面总酸量明显减少;Pt/Sn15-Al_2O_3-800催化剂表面Pt、Sn与γ-Al_2O_3之间相互作用较强,Sn0含量较低,同时Pt粒子平均粒径最小,其丙烷脱氢活性也最好,收率可达35%,以上.  相似文献   

4.
采用第一性原理密度泛函理论,对乙二醛在Au(111),Pd(111),Pt(111)面的吸附进行系统研究.结果表明,乙二醛和乙醛酸在Au(111)表面的吸附最弱,在Pd(111)表面上的吸附能最高,生成的乙醛酸不易脱附,容易被进一步氧化生成草酸.Pt催化剂性能最佳,乙二醛强化学吸附在Pt(111)面,C-H键断裂,C-C键稳定,易被氧化成目标产物乙醛酸,同时,目标产物乙醛酸在Pt催化剂表面上易脱附,氧化程度小,选择性高,与实验结果吻合较好.  相似文献   

5.
为了降低燃料电池的高成本,必须寻找一种既能减小贵金属铂的担载量,又能进一步提高氧还原反应催化活性的新型合金催化剂.基于密度泛函理论,建立了Pt_4和Pt_3Ni正四面体结构的金属团簇模型,选用氧掺杂石墨烯作为载体,四面体金属团簇以正金字塔形式稳定吸附在缺陷位正上方,在负载的金属团簇上进行氧分子的吸附和连续加氢模拟氧还原反应过程,并进行热力学计算与分析.结果表明,氧在Pt_4-OG和Pt_3Ni-OG上均以分子形式吸附并被活化,Pt_3Ni-OG对氧分子的活化作用更强;第1步加氢反应,在Pt_3Ni-OG上形成共吸附的OH*和O*时体系的能量比形成亚稳态的HOO*时低2.37,e V.热力学分析表明,氧还原反应在Pt_3Ni-OG上的主要反应路径为底位吸附路径;在Pt金属中引入Ni,使随后在吸附在Pt_3Ni-OG上的氧分子上发生的加氢反应所需的能量降低.同时Pt_3NiOG和Pt_4-OG催化氧还原反应的自由能计算结果也表明,Pt_3Ni-OG上氧还原反应中间体OH*的吸附作用减弱,进而后续形成H_2O*的反应所需的能量降低.这表明PtNi合金的氧还原反应的催化活性较Pt提高.本研究对氧还原反应高效电催化剂的设计具有指导意义.  相似文献   

6.
在花状脲醛树脂基碳材料上采用两步法合成了具有多级导电网络的氮掺杂碳负载Co_(1.29)Ni_(1.71)O_4(NC/Co_(1.29)Ni_(1.71)O_4),并探究了NC/Co_(1.29)Ni_(1.71)O_4作为氧还原催化剂的催化性能及直接甲醇燃料电池的单电池性能。文中分别使用NC/Co_(1.29)Ni_(1.71)O_4及Co_(1.29)Ni_(1.71)O_4样品作为直接甲醇燃料电池阴极催化剂,PtRu/C作为阳极催化剂和聚合物纤维膜作为电解质膜,进行了单电池性能测试。在以Co_(1.29)Ni_(1.71)O_4为阴极催化剂时,电池最大输出功率密度为1.9 m W/cm~2,而以NC/Co_(1.29)Ni_(1.71)O_4作为阴极催化剂,其电池最大输出功率密度为7.4 m W/cm~2。并且在阻抗测试中,以NC/Co_(1.29)Ni_(1.71)O_4和Co_(1.29)Ni_(1.71)O_4样品作为阴极催化剂对应的DMFCs电池内阻分别为0.26Ω·cm~(-2)和0.79Ω·cm~(-2)。结果表明,具有多级导电网络结构的NC/Co_(1.29)Ni_(1.71)O_4展现了更好的导电性和氧还原催化性能。其中,NC/Co_(1.29)Ni_(1.71)O_4中的脲醛树脂基碳可以形成三维导电网络和作为催化剂负载骨架,而同时Co_(1.29)Ni_(1.71)O_4纳米片表面吸附的导电炭黑,在Co_(1.29)Ni_(1.71)O_4纳米片表面形成了新的导电网络,进一步加速反应过程中电子在Co_(1.29)Ni_(1.71)O_4纳米片上的传输,从而构筑多级导电网络,这显著提高了NC/Co_(1.29)Ni_(1.71)O_4电催化剂的本征催化活性。  相似文献   

7.
用浸渍-焙烧法制备不同质量分数Y_2O_3的Pt/Y_2O_3-WO_3-ZrO_2催化剂。通过X线衍射(XRD)、N2物理吸附-脱附、CO脉冲吸附、NH_3程序升温脱附(NH_3-TPD)和H_2程序升温还原(H_2-TPR)等方法表征催化剂的理化性能。用连续流动固定床反应器评价催化剂催化四氢糠醇选择加氢制备1,5-戊二醇的催化性能。结果表明:掺杂Y_2O_3可改变催化剂的晶相结构、酸量、比表面积、还原性能和分散度,从而影响催化剂催化四氢糠醇加氢制备1,5-戊二醇的反应性能。Y_2O_3质量分数为1. 0%的Pt/Y_2O_3-WO_3-ZrO_2催化剂活性达到88. 0%,1,5-戊二醇的收率为68. 0%。  相似文献   

8.
基于商用V_2O_5/TiO_2催化剂,通过模拟SCR脱硝试验装置的宏观试验及原位傅里叶变换红外的微观分析手段,对SO_2催化氧化机理及硫酸氢铵(ABS)的形成机理进行了研究。结果表明,SO_2吸附在催化剂表面后先与V~(5+)—OH基团反应生成了金属硫酸盐中间产物(VOSO_4),继而转化为SO_3,O_2与温度都对该反应有促进作用。催化剂上ABS生成主要有2种机理:一是由吸附态NH_3与气相或弱吸附态SO_2反应生成;二是由金属硫酸盐(VOSO_4)与气相NH_3直接反应生成。催化剂上ABS大约在200℃生成,在450℃分解,且NO能与ABS中的NH_4~+反应而促进其分解,但此反应与脱硝反应共存且为竞争关系。  相似文献   

9.
利用固体电解质(ZrO_2+CaO)作为氧离子导体组成浓差电池:Pt(O_2吸附)|Na_3AlF_6+Al_2O_3(饱和)|ZrO_2+CaO|INa_3AlF_6+Al_2O_3(N_2)|Pt(O_2,吸附),测定了冰晶石-氧化铝熔体中Al_2O_3的活度并根据测定结果对Al_2O_3加入冰晶石熔体中所生成的新离子数目及其对Al_2O_3分解电压的影响,进行了讨论。  相似文献   

10.
基于第一性原理计算,研究Gd掺杂的Li_4Ti_5O_(12)锂离子电池负极材料的电化学特性.Gd原子替代16d位的原子形成p型或n型的Li_4Ti_5O_(12),引入的空穴和电子有效提高Li_4Ti_5O_(12)材料的电导率,同时Gd的引入有效增大Li_4Ti_5O_(12)晶胞的晶格常数,从而加宽了Li离子在体系内的扩散通道,有利于Li离子的嵌入和脱出.作为一种零应变材料,Gd的掺杂有效提高Li_4Ti_5O_(12)锂离子电池负极材料的大倍率电流充放电性能、电池的充放电比容量以及材料循环性能的稳定性.  相似文献   

11.
在固定床反应器上,研究Ga促进的Pt/WO3/ZrO2(Pt/WZ)催化剂上正庚烷异构化,并采用H2程序升温脱附质谱(H2TPDMS)技术研究Pt/WZ上引入Ga对H2吸附能力的影响.结果表明,引入Ga明显提高了Pt/WZ催化剂上正庚烷异构化反应的活性;随反应温度的升高,正庚烷异构化反应转化率增大,反应6h以内,该系列催化剂不失活;体积空速1.0h-1,氢油摩尔比14时,Ga的质量分数1.0%的Pt/GWZ催化剂上,正庚烷转化率和异庚烷选择性达到最佳值,分别为81.5%和93.6%.H2TPDMS结果表明,引入Ga提高了Pt/WZ催化剂对H2的吸附能力,有利于提高该催化剂上正庚烷异构化反应活性.  相似文献   

12.
采用密度泛函理论DFT/B3LYP方法研究掺杂了Au和Pt原子的MgO(001)表面吸附CO分子的吸附性质,通过对吸附体系的优化、能量和电子性质等的计算,结果表明,对于MgO完美表面,掺杂Pt比Au更容易吸附CO分子;在MgO(001)表面不同氧缺陷位(O5c/O4c/O3c),掺杂了Au和Pt原子后吸附CO分子的能力依次分别为:O_(3c)O_(5c)O_(4c)和O_(5c)O_(3c)O_(4c),掺杂了Pt原子的O5c位吸附能最低。可知Pt原子的掺杂及氧缺陷的MgO(001)表面,有利于吸附CO分子。  相似文献   

13.
合成了一种具有壳/核结构的水热碳包覆型Fe_2O_3@C微米球,可实现贵金属Pt催化剂的低价制备和高效利用.利用外壳水热碳的亲水特性,通过简单的常温吸附与低温焙烧的方法在Fe_2O_3@C微球表面原位负载Pt纳米颗粒,构筑了壳/核型Fe_2O_3@C-Pt催化剂.该催化剂在6min内实现对硝基苯酚的完全转化,循环10次后催化活性保持不变,表现出较高的催化活性和稳定性.作为内核的磁性γ-Fe_2O_3颗粒使得Fe_2O_3@C-Pt催化剂仅通过外加磁铁即可实现其在反应溶液中的快速分离,降低了催化剂的回收成本和时间,并显著提高回收产率.  相似文献   

14.
为了研究纳米γFe2O3催化剂选择性催化还原法(SCR)脱硝反应机理,采用微分反应器测量了纳米γFe2O3催化剂上SCR反应的动力学参数,并构建了SCR反应动力学模型.实验数据分析结果表明,NH3,NO和O2的反应级数分别为0,0.78~0.93和0.09~0.11,反应活化能为57.3 k J/mol.原位红外漫反射光谱(DRIFTS)实验结果表明:NH3能够强吸附到催化剂表面并达到饱和,进一步增加NH3的浓度并不能增加NO的转化速率;NO在有氧条件下能吸附到催化剂表面生成吸附态NO2和亚硝酸盐;在低于270℃的情况下SCR反应遵循Langmuir-Hinshelw ood(L-H)反应机理,在高于270℃的情况下则主要遵循Eley-Rideal(E-R)反应机理.  相似文献   

15.
利用HCl沉淀法制备WO3,并将其制备成Pt/WO3/C复合催化剂应用于质子交换膜燃料电池(PEMFC)的阴极.X射线衍射测试结果表明,制备的WO3结晶度较好,无杂相存在,Pt/WO3/C复合催化剂中WO3晶粒为50~75 nm,Pt晶粒为110~202 nm;循环伏安曲线和单电池极化性能测试结果表明,当m(WO3)∶m(C)=3∶1时,复合催化剂Pt/WO3/C的催化性能最好,最大电流密度为50 mA/cm2,最大功率密度为90 mW/cm2;添加WO3在一定程度上增强了Pt/C催化剂的催化性能.  相似文献   

16.
开发了一种制备纳米复合Li_2SO_4质子传导电解质和膜电极组装(MEA)的工艺.与传统的丝网涂布工艺不同,新的制备工艺是将阳极、阴极催化剂与纳米复合电解质同时一次压制成MEA.这就使得MEA的设计具有某些结构上的特点,由于膜厚减少和电极与电解质之间的接触良好,可以降低电解质与电极之间的欧姆电阻,提高其机械和导电性能,增加膜的质子传导性以及改善电池的性能.用电子扫描电镜(SEM)和电化学阻抗分析技术对电解质薄膜进行了表征,结果表明,纳米复合材料改善了MEA的总体性能.由于膜的致密性和不透气性,不会发生气体穿透过膜的现象.MEA在H_2S环境中很稳定.电池结构为H_2S,(MoS_2/NiS Ag 电解质量 淀粉) /Li_2SO_4 Al_2O_3/(NiO Ag 电解质量 淀粉),空气、MEA厚为0.8mm、电解质组成为65% Li_2SO_4 35% Al_2O_3的单电池在680℃时产生最大功率密度为130mW/cm~2,相应的电流密度为200mW/cm~2.  相似文献   

17.
用沉积-沉淀-水合肼还原法制备氧化石墨烯(GO)、石墨(graphite)、酸化石墨(graphite-H)负载的Pt催化剂,研究了它们对肉桂醛选择性加氢生成肉桂醇反应的催化性能,并对该催化剂进行多晶X射线衍射、透射电镜、拉曼光谱、N2 吸附和X射线光电子能谱表征.结果表明:3种制备的催化剂中,负载Pt后氧化石墨烯被水合肼还原生成还原氧化石墨烯(RGO),具有最高的比表面积,表面Pt的含量较低,所得Pt颗粒的粒径最小,具有最高的肉桂醛转化率;RGO 含有较多的酸性含氧基团C-OH 及COOH,有利于肉桂醛的C=O吸附,因此Pt/RGO具有最高的肉桂醇选择性.此外,还考察了Pt/RGO 催化性能与温度、氢气压强、反应时间的关系.实验表明,最佳反应温度为85℃,时间为3h,H2 压力为2.0MPa.  相似文献   

18.
采用Pt/C作为阴极催化剂,PtRu/C作为阳极催化剂,Nafion115和Nafion液涂覆膜作为质子交换膜,管状Ti丝(管)和平板式Ti网作为制备异型直接乙醇燃料电池的阴极和阳极的载体材料,制备管状阴极和平板阳极.观察了异型阴极和阳极的组织和结构,并通过单电池试验,研究了异型电极对直接乙醇燃料电池(DEFCs)性能的影响.结果表明,管状阴极涂覆的Nafion膜均匀一致,阳极催化剂与Ti网的结合能力较强,较高的O2流量有利于提高DEFCs单电池的性能,当膜载量达到25.0 mg/cm2以上时,会提高DEFCs单电池阻抗,当膜载量小于20.2 mg/cm2时,电池的使用寿命大大降低.  相似文献   

19.
制备不同Nd2O3质量分数的2% Pt/Nd2O3-WO3/ZrO2催化剂.通过N2物理吸附,NH3程序升温脱附(NH3-TPD)、H2程序升温脱附(H2-TPD)、CO脉冲吸附等方法表征催化剂的物理化学性质.用固定床连续流动反应器考察催化剂对甘油氢解制1,3-丙二醇反应的催化性能.结果表明,引入Nd2 O3提高了催化剂的H2吸附量,进而提高了催化剂的催化活性;焙烧温度对催化剂性能有重要影响.在4 MPa、130℃、质量分数为60%甘油水溶液进料、液体体积空速(LHSV)0.25 h-1反应条件下,2% Pt/0.25NdWZ (700,450)催化剂催化甘油氢解反应,甘油转化率为75.2%,1,3-丙二醇产率达28.9%,产物中n(1,3-丙二醇)/n(1,2-丙二醇)达到21.9.  相似文献   

20.
采用共沉淀-浸渍法制备PdO/Sn_xCe_yO_2催化剂,通过XRD、N_2吸附-脱附、CO-TPD和CO-DRIFT对催化剂的物相结构和表面性质进行表征和分析,并考察了催化剂的CO催化氧化活性。研究表明,催化剂的低温CO氧化活性与比表面积无关,而与表面晶格氧的活泼程度有直接关系。与富Sn催化剂Pd/Sn_(0.7)Ce_(0.3)O_2相比,富Ce催化剂Pd/Sn_(0.3)Ce_(0.7)O_2上的表面晶格氧更活泼,对低温CO的氧化起到了关键作用。CO-DRIFT结果显示,CO可以在室温下还原PdO,生成Pd~0和Pd~+。CO的吸附以Pd~0位上的线式吸附为主。相较于惰性预处理方法,氧化预处理有利于促进吸附CO的氧化,减少表面碳酸盐的生成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号