共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
小波变换地震反演方法 总被引:2,自引:0,他引:2
提出了一种利用小波变换方法提高地震剖面的分辨率,进而更有效地进行波阻抗反演的新思路。根据小波变换的特点,对测井资料进行小波分解,对分解结果的各个频段进行组合,寻找与井旁道接近的组合方案,从而得到大地滤波因子,将此滤波因子作用于其他各道,得到对应于该道的反射系数,进而求得波阻抗的值。 相似文献
3.
4.
刘洋 《成都理工大学学报(自然科学版)》2018,(2)
为提高储层厚度定量计算的精度和可靠性,提出了一种基于相控神经网络的地震多属性储层厚度预测方法。该方法首先分析目标储层的地质沉积特征,将目标划分成不同的相;利用线性方法初步估算储层厚度,并根据目的层沉积相的空间分布丰富学习样本数量和种类,在此基础上利用人工神经网络算法计算储层厚度。西湖凹陷H气田目标储层为浅水沉积环境,水下分流河道发育,应用基于相控的神经网络方法预测储层厚度,结果表明该方法提高了预测精度,厚度分布特征与地质规律吻合。 相似文献
5.
《兰州大学学报(自然科学版)》2019,(6)
在油页岩含油率实验分析的基础上,优选含油率敏感性测井参数,采用小波神经网络法构建含油率多测井参数预测模型.利用该模型对鄂尔多斯盆地东南部三叠系长7段储层含油率进行预测,将预测结果与多元线性回归预测结果进行对比.结果表明,利用小波神经网络法预测油页岩含油率精度更高,为研究区油页岩勘查工作部署提供科学依据. 相似文献
6.
由于不同气象条件会影响太阳辐照度的有效利用,这制约了太阳能的应用和发展.为了基于不同站点不同采样时刻的气象属性预测中尺度站的太阳能辐照度,依据传统卷积神经网络的框架,建立了一种新型的卷积神经网络结构幵用于太阳能辐照度预测.为了缓解新型网络由超参数选取不当导致预测性能差的问题,利用融合算法对新型网络的超参数进行优化.为了提高融合优化算法的全局搜索能力,引入帐篷映射对粒子的初始位置和初始速度进行混沌初始化.首先,导入训练集更新新型卷积神经网络框架,训练结束后导入验证集检验当前模型参数下新型卷积框架的性能.其次,混沌融合算法依据新型卷积神经框架在验证集上的预测性能更新模型的超参数.对更新模型的超参数多次检验,直至最优的预测模型在验证集上的性能趋于收敛.最后,辒出模型的最优超参数,建立太阳能辐照度预测模型.基于气象实测数据建立太阳能辐照度预测实验,引入其他两种预测方法进行对比仿真研究,幵尽可能复现了Eustaquio and Titericz团队的预测方法(GBRT)作为太阳能辐照度预测性能的评估基准.实验数据表明:混沌融合算法可以有效地提高新型卷积神经网络的预测性能,所提出预测方法的全年太阳能辐照度的均方误差较GBRT降低25.9%,绝对平均误差较GBRT降低了10.7%;全年太阳能辐照度平均误差率降低了18.4%,误差率小于0.1的样本量增加了21.1%. 相似文献
7.
传统机器学习方法在进行机械钻速预测时,受复杂特征提取和人为认知局限性的影响,难以满足现场预测精度要求。基于此,提出一种特征提取和回归预测相结合的机械钻速预测方法。首先,采用箱型图和独热编码对钻井实测数据进行预处理,清除异常数据并将离散特征连续化。其次,应用卷积神经网络(convolutional neural network, CNN)挖掘数据特征,并在网络中引入通道注意力机制(squeeze-and-excitation network, SENet),实现对CNN特征通道重要性程度的合理分配,建立SE-CNN机械钻速预测模型。最后,将SE-CNN模型与CNN模型进行对比分析,结果表明:SE-CNN模型的拟合优度提高了2.1%,平均绝对误差和均方根误差分别降低了1.1%和1.5%。SE-CNN模型具有较高的预测精度,可以用于现场机械钻速预测,为钻井提速提供科学参考。 相似文献
8.
针对无线传感器网络传输过程中容易受到噪音干扰的问题,提出了一种新的业务流预测算法AWNNP(Ant colony-based Wavelet Neural Network Prediction).该算法首先利用小波变换对业务流进行分解,并将其小波系数和尺度系数作为样本数据.其次,结合蚁群算法和神经网络来训练样本数据,采用小波模型重构进行重构,以此获得业务流的预测数据.同时,通过仿真实验对比,并分析了小波神经网络预测算法和BP神经网络预测算法,实验结果表明,AWNNP算法性能较优,其误差为16.21%. 相似文献
9.
快速小波变换,循环卷积和数论变换 总被引:2,自引:2,他引:0
证明了二维Mallat分解算法可通过二维循环卷积来计算,从而快速计算循环卷积的方法,如快速论变换,FFT等,均可用来实现二维Mallat分解算法。这也就提供了快速小波变换的一个新算法。作者分别比较了直接用二维Mallat分解算法和FNTT实现二维Mallat分解算法 法和加法运算的次数,分析表明,在通常情况下,亲 法的中法次数均会少一些,并在微PC/586上用FNTT通过二维Malat分解法对一个 相似文献
10.
在WiMAX Mesh网络中,为了实现对带宽的动态分配和有效利用,需要实时对业务流量进行实时准确预测.WiMAx Mesh 网络调度器将根据该预测值进行带宽分配.经分析,现有包括ARMA在内的流量预测方法并不能直接应用于WiMAX Mesh网络流量的预测中.在对WiMAX Mesh网络流量特性的分析基础上,提出了一种基于小波变换和线性自回归模型相结合的WiMAX Mesh网络流量预测方法.该方法首先对流量信号进行降噪,并将该处理结果用于AAR模型预测.利用Auckland大学的流量数据进行仿真,预测精度比自适应ARMA方法提高约2% .方法的预测精度较高,运算量较小,更适合于对WiMAX Mesh网络进行预测. 相似文献
11.
提出一种基于小波变换特征提取及采用两级神经网络分类器的交通标志识别方法.使用小波变换对图像进行处理,消除图像像素间的相关性,提取图像的整体特征作为神经网络分类器的输入向量.因交通标志类型较多,采用两级神经网络结构进行识别,图像特征先送入第一级分类器得到图像的粗分类型,再送入相应的二级子分类器进行细分.实验结果表明,这种方法具有良好的效果. 相似文献
12.
针对电力设备故障率具有时变性、随机性、隐含周期性等特点,预测难度大。本文采用基于小波变换和ARMA模型的电力设备故障率预测方法,对原始数据预处理后采用Daubechies小波进行分解和重构,获得各尺度域上的小波系数;分别对各尺度域上的小波系数进行ARMA建模、预测和整合,生成故障率预测数据。将预测结果与ARMA模型预测结果和实际结果进行对比和误差分析,结果说明,基于小波变换-ARMA模型的预测方法具有较高的预测精度。 相似文献
13.
提出了一种将空间方向小波零树编码与混合神经网络相结合,新的多尺度系数矢量量化策略.该算法在对图像进行多级小波变换后,利用3个方向上各自小波系数之间的相关性,构造符合图像特征的跨频带矢量,依据矢量能量和零树矢量的思想进行矢量分类,分别利用主元分析和自组织特征映射神经网络对3个方向的多尺度系数矢量进行基于视觉的加权矢量量化压缩编码.仿真实验结果表明该算法是合理可行的. 相似文献
14.
基于小波变换特征提取和神经网络分类的人脸识别 总被引:1,自引:0,他引:1
为提高人脸图像识别率,提出一种将小波分析与神经网络相结合的人脸识别方法。用二维离散小波变换函数对人脸图像进行二维离散小波变换,提取其低频系数作为人脸特征值,用三层神经网络进行分类、识别。实验证明,和单纯的小波方法及神经网络方法进行人脸识别相比,这种方法收敛步数少、用时短、具有较高的识别率。 相似文献
15.
由于现代的数据通信网络中网络流量存在很强的自相似性,如何降低这种自相似性给网络的性能造成的不利影响成为大家关注的焦点。本文通过实际的网络流量数据,利用小波变换和平稳时间序列的AR模型,实现了对网络流量很好的预测,其结果对于在网络中优化排队算法和实施流量工程具有很好的参考价值。 相似文献
16.
针对现有线性结构非平稳地震响应分析的小波方法中存在计算效率较低的问题,提出了一种求解时频响应的改进方法,即将原地震信号直接输入结构,求得结构响应,再对该响应进行小波分解和重构,得到结构在各频段的响应,反映出结构响应的时频特性.利用小波变换中多分辨率分析的思想及线性结构响应求解的振型分解法,证明了改进方法与现有方法计算结... 相似文献
17.
18.
小波变换集遗传算法神经网络的径流预测建模 总被引:1,自引:0,他引:1
为获得更精确的径流预报结果,利用dmey小波变换对径流时间序列分解为高频信号和低频信号,再使用遗传算法优化的BP神经网络分别对其进行预测,最后利用dmey小波逆变进行重构,以此建立径流总量预测模型。通过对柳江径流总量进行实例分析,并与遗传算法优化的神经网络模型、BP神经网络模型及传统的时间序列分析方法对比,该方法获得更准确的预测结果。研究结果表明该模型能充分反映径流时间序列趋势,预报稳定性好,预报准确率高,为径流时间序列预测提供一个有效建模方法。 相似文献
19.
准确的机票低价预测有助于民航需求与供给的灵活对接及民航资源的充分利用.机票价格波动性大、随机性强、易受到诸多因素的影响,使得机票价格预测成为了一个极具挑战的问题.充分考虑机票价格自身特点,设计了二维"机票价格时间片"结构,并基于时间片充分挖掘、利用机票价格数据的规律与关系,设计了以卷积神经网络为核心的两阶段机票价格预测模型,对未来机票最低价格进行预测.在某在线订票网站的真实价格数据集上进行了验证,并与4种流行的基准模型进行了对比.结果表明:本文的方法明显优于其他模型,MAE效果提升了13.67%,MAPE数值降低了1.52%. 相似文献
20.
针对图像压缩中压缩率与图像质量的折衷问题。综合利用小波变换和神经网络各自的优点,采用小波和神经网络的方法进行图像压缩.该算法先对图像进行小波分解,保留低频系数,然后将高频系数输入训练的网络进行矢量量化编码达到压缩的目的.最后根据保留的低频系数和还原的高频系数重构图像. 相似文献