共查询到20条相似文献,搜索用时 15 毫秒
1.
吴跃生 《北京联合大学学报(自然科学版)》2012,(3)
讨论了形如P6k+23∪Pn3非连通并图的优美性,用构造性的方法给出P6k+23∪Pn3的优美标号,并证明P6k+23∪Pn3是交错图。 相似文献
2.
吴跃生 《吉首大学学报(自然科学版)》2012,(3):4-6,10
讨论了形如P_(6k+5)~3∪P_n~3的非连通并图的优美性,用构造性的方法给出了P_(6k+5)~3∪P_n~3的优美标号,并证明P_(6k+5)~3∪P_n~3是交错图. 相似文献
3.
在n个顶点的路Pn上,当且仅当两点的距离为3时增加一条边,所得的图称为P3n.作者讨论了形如P36k+33 ∪P3n非连通并图的优美性,用构造性的方法给出了P6k+33 ∪P3n的优美标号,并证明了P36k+33 ∪P3n是交错图. 相似文献
4.
吴跃生 《吉首大学学报(自然科学版)》2012,33(3)
讨论了形如P^36k+5∪P^3n的非连通并图的优美性,用构造性的方法给出了P^36k+5∪P^3n的优美标号,并证明P^36k+5∪P^3n是交错图. 相似文献
5.
关于图P6k+43∪Pn3的优美性 总被引:3,自引:0,他引:3
讨论了形如P63k+4∪Pn3非连通并图的优美性,用构造性的方法给出了P36k+4∪Pn3的优美标号,并证明P63k+4∪Pn3是交错图. 相似文献
6.
《贵州师范大学学报(自然科学版)》2015,(1):69-72
讨论了非连通图G23∪G的优美性,给出了非连通图G23∪G是优美图的两个充分条件。证明了如果图G是特征为k且缺k+2或k+11标号值的交错图,则非连通图G23∪G存在缺k+1标号值的优美标号。 相似文献
7.
吴跃生 《吉首大学学报(自然科学版)》2012,33(3):4-6
讨论了形如P36k+5∪P3n的非连通并图的优美性,用构造性的方法给出了P36k+5∪P3n的优美标号,并证明P36k+5∪P3n是交错图. 相似文献
8.
给出了非连通图(K1∨(P(1)n∪P(2)n))∪P(3)n和(K1∨(P(1)n∪P(2)n))∪St(n),且对其优美性进行了研究。证明了如下结论:设n为任意正整数,则当n≥4时,非连通图(K1∨(P(1)n∪P(2)n))∪P(3)n和(K1∨(P(1)n∪P(2)n))∪St(n)均是优美图;其中,Pn是n个顶点的路,Kn是n个顶点的完全图,St(n)是n+1个顶点的星形树,G1∨G2是图G1与G2的联图。 相似文献
9.
图C4k ∪ Pn的优美性 总被引:1,自引:0,他引:1
研究了图与路不交并图C4k ∪ Pn≥k 2的优美性,首先利用弱优美性的定义,给出了与所研究问题等价的两个命题,把C4k ∪ Pn n≥k 2优美性的证明转化为若干路弱优美性的证明,使问题简单化,接着用这种方法证明了k=2,3,4,5,6,7时C4k ∪ Pn n≥k 2的优美性。 相似文献
10.
n(n≥2)条长为2的路具有两个共同的端点的二分图记为A(n)=(X,Y,E),其中X为2n度顶点集合,y为2度顶点集合,记X={u1,u2},y={v0,v1,…,vn-1},A(nj)=(Xj,Yj,Ej)(nj≥2)中的Xj={v1j,v2j},Yj={v1j,v2j,…,vnjj-1}(j=1,2,…,m),用一条边连接vnjj-1与u2j+1(j=1,2,…,m-1)得到的图记为∧mj=1A(nj).图∪ni=1∧mij=1A(nj)是n个∧mij=1A(nj)的不交并,本文证明了∪ni=1∧mij=1A(nj)是优美的且是交错的. 相似文献
11.
讨论了非连通图G23∪G的优美性,给出了非连通图G23∪G是优美图的两个充分条件.证明了如果图G是特征为k且缺k+2或k+11标号值的交错图,则非连通图G23∪G存在缺k+1标号值的优美标号. 相似文献
12.
13.
14.
吴跃生 《盐城工学院学报(自然科学版)》2016,29(4):71-76
讨论了非连通图C_(4m)∪C_(8m)∪G_(k+a)的优美性,给出了非连通图C_(4m)∪C_(8m)∪G_(k+a)是优美图的4个充分条件。 相似文献
15.
吴跃生 《北京联合大学学报(自然科学版)》2012,26(3):66-68
讨论了形如P(6k+2)^3∪Pn^3非连通并图的优美性,用构造性的方法给出P(6k+2)^3∪Pn^3的优美标号,并证明P(6k+2)^3∪Pn^3是交错图。 相似文献
16.
C4k∪C4k∪Cm的优美性 总被引:2,自引:0,他引:2
董俊超 《烟台大学学报(自然科学与工程版)》1999,12(4):238-241
C4k∪C4k的优美性已被证明,本文研究C4k∪Ck∪Cm的优美性。给出了其为优美图的必要条件,同时给出了C4k∪Ck∪Ck-1,C4(3t+1)∪C(t+1)∪C4(2t+1)以及C4(3t+1)∪C(3t-1)∪Ct-1的优美标号。 相似文献
17.
文章证明了对任意自然数n≥1,p≥1,k≥1,当m1=2p+3或2p+4时,图W(k)m1∪Kn,p为优美图,其中Wm1(k)为由k个轮Wmi(i=1,2,…,k)的中心顶点合并后构成的连通图;当m1≥3,n≥[m1/2]时,非连通图Wm1(k)∪St(n)为优美图;对任意自然数p≥1,图W2p+2+i(k)∪Gip为优美图,其中,Gpi表示p条边的i-优美图(i=1,2);对任意自然数n≥1,当m1=2n+5时,图Wm1(k)∪(C3∨■)为优美图。 相似文献
18.
n(n≥2)条长为2的路具有两个共同的端点的二分图记为A(n)=(X,Y,E),其中X为2n度顶点集合,Y为2度顶点集合,记X={u1,u2},y=v0,v1,…,vn-1,A(nj)=(Xj,Yj,Ej)(nj≥2)中的Xj={uj1,uj2},Yj={vj1,vj2,…,vjnj-1}(j=1,2,…,m),用一条边连接vjnj-1与uj2+1(j=1,2,…,m-1)得到的图记为∧from j=1 to m A(nj).图∪from i=1 to n ∧from j=1 to m_i A(n_j)是n个∧from j=1 to m_i的不交并.本文证明了∪from i=1 to n ∧from j=1 to m_i A(n_j)是优美的且是交错的. 相似文献
19.
关于Km,n并图的优美性 总被引:2,自引:0,他引:2
对于自然数k,m,n,本文给出一类非连通图↑k∪↓i=1Kmi.ni;通过构造标号函数的方法,证明了当max{mi,ni}≥3,min{mi,ni}≥2(i=1,2,…,k)时这类图既是优美图,也是交错图;从而给出构造一类任意个图的并图是优美图的一种方法,拓宽了优美图及其应用的道路。 相似文献
20.
文章证明了对任意自然数n≥1,P≥1,K≥1,当m1=2p+3或2p+4时,图W(k)m1U Kn,p为优美图,其中W(k)m1为由k个轮Wmi(i=1,2,…,k)的中心顶点合并后构成的连通图;当m1≥3,n≥[m1/2]时,非连通图W(k)m1∪St(n)为优美图;对任意自然数P≥1,图W(k)2p2+i∪Gpi为优美图,其中,Gpi表示p条边的i-优美图(i=1,2);对任意自然数n≥1,当m1=2n+5时,图W(k)m1∪(C3VKn)为优美图. 相似文献