首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cardiac hypertrophy is an adaptive enlargement of the myocardium in response to altered stress or injury. The cellular responses of cardiomyocytes and non-cardiomyocytes to various signaling pathways should be tightly and delicately regulated to maintain cardiac homeostasis and prevent pathological cardiac hypertrophy. MicroRNAs (miRNAs) are endogenous, single-stranded, short non-coding RNAs that act as regulators of gene expression by promoting the degradation or inhibiting the translation of target mRNAs. Recent studies have revealed expression signatures of miRNAs associated with pathological cardiac hypertrophy and heart failure in humans and mouse models of heart diseases. Increasing evidence indicates that dysregulation of specific miRNAs could alter the cellular responses of cardiomyocytes and non-cardiomyocytes to specific signaling upon the pathological hemodynamic overload, leading to cardiac hypertrophy and heart failure. This review summarizes the cell-autonomous functions of cardiomyocyte miRNAs regulated by different pathways and the roles of non-cardiomyocyte miRNAs in cardiac hypertrophy. The therapeutic effects of a number of miRNAs in heart diseases are also discussed.  相似文献   

2.
Pulmonary arterial hypertension (PAH) is a chronic disease characterized by a progressive elevation in mean pulmonary arterial pressure. This occurs due to abnormal remodeling of small peripheral lung vasculature resulting in progressive occlusion of the artery lumen that eventually causes right heart failure and death. The most common cause of PAH is inactivating mutations in the gene encoding a bone morphogenetic protein type II receptor (BMPRII). Current therapeutic options for PAH are limited and focused mainly on reversal of pulmonary vasoconstriction and proliferation of vascular cells. Although these treatments can relieve disease symptoms, PAH remains a progressive lethal disease. Emerging data suggest that restoration of BMPRII signaling in PAH is a promising alternative that could prevent and reverse pulmonary vascular remodeling. Here we will focus on recent advances in rescuing BMPRII expression, function or signaling to prevent and reverse pulmonary vascular remodeling in PAH and its feasibility for clinical translation. Furthermore, we summarize the role of described miRNAs that directly target the BMPR2 gene in blood vessels. We discuss the therapeutic potential and the limitations of promising new approaches to restore BMPRII signaling in PAH patients. Different mutations in BMPR2 and environmental/genetic factors make PAH a heterogeneous disease and it is thus likely that the best approach will be patient-tailored therapies.  相似文献   

3.
Loss of functional cardiomyocytes is a major underlying mechanism for myocardial remodeling and heart diseases, due to the limited regenerative capacity of adult myocardium. Apoptosis, programmed necrosis, and autophagy contribute to loss of cardiac myocytes that control the balance of cardiac cell death and cell survival through multiple intricate signaling pathways. In recent years, non-coding RNAs (ncRNAs) have received much attention to uncover their roles in cell death of cardiovascular diseases, such as myocardial infarction, cardiac hypertrophy, and heart failure. In addition, based on the view that mitochondrial morphology is linked to three types of cell death, ncRNAs are able to regulate mitochondrial fission/fusion of cardiomyocytes by targeting genes involved in cell death pathways. This review focuses on recent progress regarding the complex relationship between apoptosis/necrosis/autophagy and ncRNAs in the context of myocardial cell death in response to stress. This review also provides insight into the treatment for heart diseases that will guide novel therapies in the future.  相似文献   

4.
5.
6.
Myocardial infarction (MI) is caused by the occlusion of a coronary artery due to underlying atherosclerosis complicated by localized thrombosis. The blockage of blood flow leads to cardiomyocyte (CM) death in the infarcted area. Adult mammalian cardiomyocytes have little capacity to proliferate in response to injury; however, some pathways active during embryogenesis and silent during adult life are recruited in response to tissue injury. One such example is hedgehog (Hh) signaling. Hh is involved in the embryonic development of the heart and coronary vascular system. Pathological conditions including ischemia activate Hh signaling in adult tissues. This review highlights the involvement of Hh signaling in ischemic tissue regeneration with a particular emphasis on heart regeneration and discusses its potential role as a therapeutic agent.  相似文献   

7.
Myocardial infarction (MI) is a leading cause of hospitalization worldwide. A recently developed strategy to improve the management of MI is based on the use of growth factors which are able to enhance the intrinsic capacity of the heart to repair itself or regenerate after damage. Among others, hepatocyte growth factor (HGF) has been proposed as a modulator of cardiac repair of damage due to the pleiotropic effects elicited by Met receptor stimulation. In this review we describe the mechanistic basis for autocrine and paracrine protection of HGF in the injured heart. We also analyse the role of HGF/Met in stem cell maintenance and in stem cell therapies for MI. Finally, we summarize the most significant results on the use of HGF in experimental models of heart injury and discuss the potential of the molecule for treating ischaemic heart disease in humans.  相似文献   

8.
MicroRNAs (miRNAs) are a recently discovered family of small regulatory molecules that function by modulating protein production. There are approximately 500 known mammalian miRNA genes, and each miRNA may regulate hundreds of different protein-coding genes. Mature miRNAs bind to target mRNAs in a protein complex known as the miRNA-induced silencing complex (miRISC), sometimes referred to as the miRNP (miRNA-containing ribonucleoprotein particles), where mRNA translation is inhibited or mRNA is degraded. These actions of miRNAs have been shown to regulate several developmental and physiological processes including stem cell differentiation, haematopoiesis, cardiac and skeletal muscle development, neurogenesis, insulin secretion, cholesterol metabolism and the immune response. Furthermore, aberrant expression has been implicated in a number of diseases including cancer and heart disease. The role of miRNAs in these developmental, physiological and pathological processes will be reviewed. Received 3 August 2007; received after revision 3 October 2007; accepted 5 October 2007  相似文献   

9.
10.
Malignant mesothelioma (MM) is an aggressive tumor, mainly derived from the pleura, which is predominantly associated with exposure to asbestos fibers. The prognosis of MM patients is particularly severe, with a median survival of approximately 9–12 months and latency between exposure and diagnosis ranging from 20–50 years (median 30 years). Emerging evidence has demonstrated that tumor aggressiveness is associated with genome and gene expression abnormalities; therefore, several studies have recently focused on the role of microRNAs (miRNAs) in MM tumorigenesis. miRNAs are small non-protein coding single-stranded RNAs (17–22 nucleotides) involved in numerous cellular processes that negatively regulate gene expression by modulating the expression of downstream target genes. miRNAs are often deregulated in cancer; in particular, the differential miRNA expression profiles of MM cells compared to unaffected mesothelial cells have suggested potential roles of miRNAs as either oncogenes or tumor suppressor genes in MM oncogenesis. In this review, the mechanism of MM carcinogenesis was evaluated through the analysis of the published miRNA expression data. The roles of miRNAs as diagnostic biomarkers and prognostic factors for potential therapeutic strategies will be presented and discussed.  相似文献   

11.
Various clinical manifestations leading to death have been documented in most cases of bites caused by venomous snakes. Cobra envenomation is an extremely variable process and known to cause profound neurological abnormalities. The complexity of cobra venom can induce multiple-organ failure, leading to death in case of severe envenomation. Intramuscular administration of Malayan spitting cobra (Naja sputatrix) crude venom at 1 g/g dose caused death in mice in approximately 3 h. Analysis of gene expression profiles in the heart, brain, kidney, liver and lung revealed 203 genes whose expression was altered by at least 3-fold in response to venom treatment. Of these, 50% were differentially expressed in the heart and included genes involved in inflammation, apoptosis, ion transport and energy metabolism. Electrocardiogram recordings and serum troponin T measurements indicated declining cardiac function and myocardial damage. This not only sheds light on the cardiotoxicity of cobra venom but also reveals the molecular networks affected during envenomation.Received 7 August 2004; received after revision 11 October 2004; accepted 4 November 2004  相似文献   

12.
13.
Growing number of studies provide strong evidence that the mitochondrial permeability transition pore (PTP), a non-selective channel in the inner mitochondrial membrane, is involved in the pathogenesis of cardiac ischemia–reperfusion and can be targeted to attenuate reperfusion-induced damage to the myocardium. The molecular identity of the PTP remains unknown and cyclophilin D is the only protein commonly accepted as a major regulator of the PTP opening. Therefore, cyclophilin D is an attractive target for pharmacological or genetic therapies to reduce ischemia–reperfusion injury in various animal models and humans. Most animal studies demonstrated cardioprotective effects of PTP inhibition; however, a recent large clinical trial conducted by international groups demonstrated that cyclosporine A, a cyclophilin D inhibitor, failed to protect the heart in patients with myocardial infarction. These studies, among others, raise the question of whether cyclophilin D, which plays an important physiological role in the regulation of cell metabolism and mitochondrial bioenergetics, is a viable target for cardioprotection. This review discusses previous studies to provide comprehensive information on the physiological role of cyclophilin D as well as PTP opening in the cell that can be taken into consideration for the development of new PTP inhibitors.  相似文献   

14.
15.
MicroRNAs (miRNAs), a novel class of molecules regulating gene expression, have been hailed as modulators of many biological processes and disease states. Recent studies demonstrated an important role of miRNAs in the processes of inflammation and cancer, however, there are little data implicating miRNAs in peripheral pain. Bladder pain syndrome/interstitial cystitis (BPS/IC) is a clinical syndrome of pelvic pain and urinary urgency/frequency in the absence of a specific cause. BPS is a chronic inflammatory condition that might share some of the pathogenetic mechanisms with its common co-morbidities inflammatory bowel disease (IBD), asthma and autoimmune diseases. Using miRNA profiling in BPS and the information about validated miRNA targets, we delineated the signaling pathways activated in this and other inflammatory pain disorders. This review projects the miRNA profiling and functional data originating from the research in bladder cancer and immune-mediated diseases on the BPS-specific miRNAs with the aim to gain new insight into the pathogenesis of this enigmatic disorder, and highlighting the common regulatory mechanisms of pain and inflammation.  相似文献   

16.
Regenerating functional heart tissue for myocardial repair   总被引:1,自引:1,他引:0  
Heart disease is one of the leading causes of death worldwide and the number of patients with the disease is likely to grow with the continual decline in health for most of the developed world. Heart transplantation is one of the only treatment options for heart failure due to an acute myocardial infarction, but limited donor supply and organ rejection limit its widespread use. Cellular cardiomyoplasty, or cellular implantation, combined with various tissue-engineering methods aims to regenerate functional heart tissue. This review highlights the numerous cell sources that have been used to regenerate the heart as well as cover the wide range of tissue-engineering strategies that have been devised to optimize the delivery of these cells. It will probably be a long time before an effective regenerative therapy can make a serious impact at the bedside.  相似文献   

17.
In addition to traditional neurotransmitters of the sympathetic and parasympathetic nervous systems, the heart also contains numerous neuropeptides. These neuropeptides not only modulate the effects of neurotransmitters, but also have independent effects on cardiac function. While in most cases the physiological actions of these neuropeptides are well defined, their contributions to cardiac pathology are less appreciated. Some neuropeptides are cardioprotective, some promote adverse cardiac remodeling and heart failure, and in the case of others their functions are unclear. Some have both cardioprotective and adverse effects depending on the specific cardiac pathology and progression of that pathology. In this review, we briefly describe the actions of several neuropeptides on normal cardiac physiology, before describing in more detail their role in adverse cardiac remodeling and heart failure. It is our goal to bring more focus toward understanding the contribution of neuropeptides to the pathogenesis of heart failure, and to consider them as potential therapeutic targets.  相似文献   

18.
M J Galvin  A M Lefer 《Experientia》1979,35(12):1602-1604
Hepatic blood flow was monitored in cats during myocardial ischemia (MI). Increased plasma CPK activity, the S-T segment of the electrocardiogram, and hepatic flow was reduced by 5 h to 40% of control. The results suggest that MI can influence organs distant from the original ischemic episode.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号