首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Therian mammals (marsupials and placentals) have an XX female: XY male sex chromosome system, which is homologous to autosomes in other vertebrates. The testis-determining gene, SRY, is conserved on the Y throughout therians, but is absent in other vertebrates, suggesting that the mammal system evolved about 310 million years ago (MYA). However, recent work on the basal monotreme mammals has completely changed our conception of how and when this change occurred. Platypus and echidna lack SRY, and the therian X and Y are represented by autosomes, implying that SRY evolved in therians after their divergence from monotremes only 166 MYA. Clues to the ancestral mechanism usurped by SRY in therians are provided by the monotremes, whose sex chromosomes are homologous to the ZW of birds. This suggests that the therian X and Y, and the SRY gene, evolved from an ancient bird-like sex chromosome system which predates the divergence of mammals and reptiles 310 MYA. Received 4 March 2008; received after revision 22 April 2008; accepted 3 June 2008  相似文献   

2.
Animals, ranging from basal metazoans to primates, are host to complex microbial ecosystems; engaged in a symbiotic relationship that is essential for host physiology and homeostasis. Epithelial surfaces vary in the composition of colonizing microbiota as one compares anatomic sites, developmental stages and species origin. Alterations of microbial composition likely contribute to susceptibility to several distinct diseases. The forces that shape the colonizing microbial composition are the focus of much current investigation, and it is evident that there are pressures exerted both by the host and the external environment to mold these ecosystems. The focus of this review is to discuss recent studies that demonstrate the critical importance of host factors in selecting for its microbiome. Greater insight into host–microbiome interactions will be essential for understanding homeostasis at mucosal surfaces, and developing useful interventions when homeostasis is disrupted.  相似文献   

3.
4.
Even though the etiology of Alzheimer’s disease (AD) remains unknown, it is suggested that an interplay among genetic, epigenetic and environmental factors is involved. An increasing body of evidence pinpoints that dysregulation in the epigenetic machinery plays a role in AD. Recent developments in genomic technologies have allowed for high throughput interrogation of the epigenome, and epigenome-wide association studies have already identified unique epigenetic signatures for AD in the cortex. Considerable evidence suggests that early dysregulation in the brainstem, more specifically in the raphe nuclei and the locus coeruleus, accounts for the most incipient, non-cognitive symptomatology, indicating a potential causal relationship with the pathogenesis of AD. Here we review the advancements in epigenomic technologies and their application to the AD research field, particularly with relevance to the brainstem. In this respect, we propose the assessment of epigenetic signatures in the brainstem as the cornerstone of interrogating causality in AD. Understanding how epigenetic dysregulation in the brainstem contributes to AD susceptibility could be of pivotal importance for understanding the etiology of the disease and for the development of novel diagnostic and therapeutic strategies.  相似文献   

5.
Tautomerase superfamily members have an amino-terminal proline and a β–α–β fold, and include 4-oxalocrotonate tautomerase (4-OT), 5-(carboxymethyl)-2-hydroxymuconate isomerase (CHMI), trans- and cis-3-chloroacrylic acid dehalogenase (CaaD and cis-CaaD, respectively), malonate semialdehyde decarboxylase (MSAD), and macrophage migration inhibitory factor (MIF), which exhibits a phenylpyruvate tautomerase (PPT) activity. Pro-1 is a base (4-OT, CHMI, the PPT activity of MIF) or an acid (CaaD, cis-CaaD, MSAD). Components of the catalytic machinery have been identified and mechanistic hypotheses formulated. Characterization of new homologues shows that these mechanisms are incomplete. 4-OT, CaaD, cis-CaaD, and MSAD also have promiscuous activities with a hydratase activity in CaaD, cis-CaaD, and MSAD, PPT activity in CaaD and cis-CaaD, and CaaD and cis-CaaD activities in 4-OT. The shared promiscuous activities provide evidence for divergent evolution from a common ancestor, give hints about mechanistic relationships, and implicate catalytic promiscuity in the emergence of new enzymes. Received 22 May 2008; received after revision 20 June 2008; accepted 02 July 2008  相似文献   

6.
The revolution in geology, initiated with Alfred Wegener’s theory of continental drift, has been the subject of many philosophical discussions aiming at resolving the problem of rationality underlying this historical episode. Even though the debate included analyses in terms of scientific methodology, applications of concrete accounts of epistemic justification to this case study have been rare. In particular, the question as to whether Wegener’s theory was epistemically worthy of pursuit in the first half of the twentieth century, that is, in its early development, remained open or inadequately addressed. The aim of this paper is to offer an answer to this question. The evaluation of Drift will be done by means of an account of theory evaluation suitable for the context of pursuit, developed in ?e?elja and Straßer (accepted for publication). We will argue that pursuing the theory of continental drift was rational, i.e., that it was irrational to reject its pursuit as unworthy.  相似文献   

7.
What’s new in the renin-angiotensin system?   总被引:6,自引:0,他引:6  
Angiotensin-converting enzyme 2 (ACE2) is a recently discovered homologue of the key enzyme of the renin-angiotensin system, the angiotensin-converting enzyme. The ACE2 enzyme is mainly expressed in cardiac blood vessels and tubular epithelia of the kidneys. Together with ACE2's unique metallocarboxypeptidase activity, the restricted tissue distribution suggests a distinctive physiological function in blood pressure, blood flow and fluid regulation. The ace2 gene was mapped to quantitative trait loci affecting susceptibility to hypertension in rats. Furthermore, ACE2 appears to be a negative regulator of ACE in the heart. ACE2 messenger RNA and protein levels are substantially regulated in the kidney of diabetic and pregnant rats. The mechanism of ACE2 function and its physiologic significance are not yet fully understood; however, as ACE2 differs in its specificity and physiological role from ACE, this opens a new potential venue for drug discovery aimed at cardiovascular disease, hypertension and diabetic complications.  相似文献   

8.
What’s new in the renin-angiotensin system?   总被引:4,自引:0,他引:4  
Cellular entry of enveloped viruses is often dependent on attachment proteins expressed on the host cell surface. Viral envelope proteins bind these receptors, and, in an incompletely understood process, facilitate fusion of the cellular and viral membranes so as to introduce the viral core into the cytoplasm. Only a small fraction of viral receptors have been identified so far. Recently, a novel coronavirus was identified as the etiological agent of severe acute respiratory syndrome (SARS). The fusion protein gene of SARS coronavirus (SARS-CoV) was cloned and characterized, and shortly thereafter, angiotensin-converting enzyme 2 (ACE2) was shown to be its functional receptor. Identification of ACE2 as a receptor for SARS-CoV will likely contribute to the development of antivirals and vaccines. It may also contribute to the development of additional animal models for studying SARS pathogenesis, and could help identify the animal reservoir of SARS-CoV.  相似文献   

9.
What’s new in the renin-angiotensin system?   总被引:2,自引:0,他引:2  
Angiotensin-converting enzyme (ACE) is a zinc- and chloride-dependent metallopeptidase that plays a vital role in the metabolism of biologically active peptides. Until recently, much of the inhibitor design and mechanism of action of this ubiquitous enzyme was based on the structures of carboxypeptidase A and thermolysin. When compared to the recently solved structures of the testis isoform of ACE (tACE) and its Drosophila homologue (AnCE), carboxypeptidase A showed little structural homology outside of the active site, while thermolysin revealed significant but less marked overall similarity. The ellipsoid-shaped structure of tACE, which has a preponderance of -helices, is characterised by a core channel that has a constriction approximately 10 Å from its opening where the zinc-binding active site is located. Comparison of the native protein with the inhibitor-bound form (lisinopril-tACE) does not reveal any striking differences in the conformation of the inhibitor binding site, disfavouring an open and closed configuration. However, the inhibitor complex does provide insights into the network of hydrogen-bonding and ionic interactions in the active site as well as the mechanism of ACE substrate hydrolysis. The three-dimensional structure of ACE now paves the way for the rational design of a new generation of domain-selective ACE inhibitors.  相似文献   

10.
What’s new in the renin-angiotensin system?   总被引:6,自引:0,他引:6  
Virtually all existing evidence on the function of angiotensin II (Ang II) in the regulation of tissue homeostasis and blood pressure regulation bears on the more restricted question of what other mechanisms or systems may amplify or inhibit the actions of this important peptide. Whereas there is evidence that Ang II may potentiate the effects of catecholamines, various cytokines and also growth factors, the repertoire of substances which may inhibit the actions of Ang II is more limited and has been restricted primarily to prostacyclin, bradykinin and nitric oxide. Advances in receptor pharmacology and introduction of selective antagonists to two of the receptor subtypes at which Ang II binds permitted a more critical examination of the functions of the renin angiotensin system in physiological and pathophysiological conditions, as well as uncovering the previously unsuspected possibility that within the biochemical pathways leading to the formation of the peptide the renin angiotensin system could process either its immediate precursor (angiotensin I) or the actual Ang II peptide into an alternative form, angiotensin-(1-7) [Ang-(1-7)], the function of which was to antagonize the effects of Ang II. We review here the biological actions of Ang-(1-7) and discuss how this discovery may change altogether the perception of how the renin angiotensin system functions in the regulation of tissue perfusion pressure and the regulation of salt and water metabolism.  相似文献   

11.
What’s new in the renin-angiotensin system?   总被引:5,自引:0,他引:5  
Angiotensin-converting enzyme-2 (ACE2) is the first human homologue of ACE to be described. ACE2 is a type I integral membrane protein which functions as a carboxypeptidase, cleaving a single hydrophobic/basic residue from the C-terminus of its substrates. ACE2 efficiently hydrolyses the potent vasoconstrictor angiotensin II to angiotensin (1-7). It is a consequence of this action that ACE2 participates in the renin-angiotensin system. However, ACE2 also hydrolyses dynorphin A (1-13), apelin-13 and des-Arg(9) bradykinin. The role of ACE2 in these peptide systems has yet to be revealed. A physiological role for ACE2 has been implicated in hypertension, cardiac function, heart function and diabetes, and as a receptor of the severe acute respiratory syndrome coronavirus. This paper reviews the biochemistry of ACE2 and discusses key findings such as the elucidation of crystal structures for ACE2 and testicular ACE and the development of ACE2 inhibitors that have now provided a basis for future research on this enzyme.  相似文献   

12.
13.
The type 1 angiotensin receptor (AT(1)) activates an array of intracellular signalling pathways that control cell and tissue responses to the peptide hormone angiotensin II (AngII). The capacity of AT(1) receptors to initiate and maintain such signals has typically been explained on the basis of conventional heterotrimeric guanine nucleotide binding protein (G protein) activation, specifically G(q/11). Accumulating evidence from studies utilising a variety of AT(1) receptor mutants and AngII analogues indicates that some important downstream effects of AT(1) receptors are independent of classical G protein coupling. Importantly, AT(1) receptor-mediated endocytosis, tyrosine phosphorylation signalling and mitogen-activated protein kinase activation as well as transactivation of the epidermal growth factor receptor can occur in G(q/11)-uncoupled receptor mutants. These observations point to a functional partitioning of AT(1) receptor signals that permits separation of short-term AngII actions (e.g., vasoconstriction) from more extended events, such as pathological cell growth in heart and blood vessels, and may open up new avenues for selective antagonism.  相似文献   

14.
15.
Activation of the type 1 angiotensin II receptor (AT(1)R) is associated with the aetiology of left ventricular hypertrophy, although the exact intracellular signalling mechanism(s) remain unclear. Transactivation of the epidermal growth factor receptor (EGFR) has emerged as a central mechanism by which the G protein-coupled AT(1)R, which lacks intrinsic tyrosine kinase activity, can stimulate the mitogen-activated protein kinase signalling pathways thought to mediate cardiac hypertrophy. Current studies support a model whereby AT(1)R-dependent transactivation of EGFRs on cardiomyocytes involves stimulation of membrane-bound metalloproteases, which in turn cleave EGFR ligands such as heparin-binding EGF from a plasma membrane-associated precursor. Numerous aspects of the 'triple membrane-passing signalling' paradigm of AT(1)R-induced EGFR transactivation remain to be characterised, including the identity of the specific metalloproteases involved, the intracellular mechanism for their activation and the exact EGFR subtypes required. Here we examine how 'hijacking' of the EGFR might explain the ability of the AT(1)R to elicit the temporally and qualitatively diverse responses characteristic of the hypertrophic phenotype, and discuss the ramifications of delineating these pathways for the development of new therapeutic strategies to combat cardiac hypertrophy.  相似文献   

16.
What’s new in the renin-angiotensin system?   总被引:6,自引:0,他引:6  
The angiotensin AT(4) receptor was originally defined as the specific, high-affinity binding site for the hexapeptide angiotensin IV (Ang IV). Subsequently, the peptide LVV-hemorphin 7 was also demonstrated to be a bioactive ligand of the AT(4) receptor. Central administration of Ang IV, its analogues or LVV-hemorphin 7 markedly enhance learning and memory in normal rodents and reverse memory deficits observed in animal models of amnesia. The AT(4) receptor has a broad distribution and is found in a range of tissues, including the adrenal gland, kidney, lung and heart. In the kidney Ang IV increases renal cortical blood flow and decreases Na(+) transport in isolated renal proximal tubules. The AT(4) receptor has recently been identified as the transmembrane enzyme, insulin-regulated membrane aminopeptidase (IRAP). IRAP is a type II integral membrane spanning protein belonging to the M1 family of aminopeptidases and is predominantly found in GLUT4 vesicles in insulin-responsive cells. Three hypotheses for the memory-potentiating effects of the AT(4) receptor/IRAP ligands, Ang IV and LVV-hemorphin 7, are proposed: (i) acting as potent inhibitors of IRAP, they may prolong the action of endogenous promnestic peptides; (ii) they may modulate glucose uptake by modulating trafficking of GLUT4; (iii) IRAP may act as a receptor, transducing the signal initiated by ligand binding to its C-terminal domain to the intracellular domain that interacts with several cytoplasmic proteins.  相似文献   

17.
18.
Two classes of ovarian steroids, estrogens and progestins, are potent in protecting neurons against acute toxic events as well as chronic neurodegeneration. Herein we review the evidence for neuroprotection by both classes of steroids, provide plausible mechanisms for these potent neuroprotective activities and indicate the need for further clinical trials of both estrogens and progestins in protection against acute and chronic conditions that cause neuronal death. Estrogens at concentrations ranging from physiological to pharmacological are neuroprotective in a variety of in vitro and in vivo models of cerebral ischemia and brain trauma as well as in reducing key neuropathologies of Alzheimers disease. While the mechanisms of this potent neuroprotection are currently unresolved, a mitochondrial mechanism is involved. Progestins have been recently shown to activate many of the signaling pathways used by estrogens to neuroprotect, and progestins have been shown to protect against neuronal loss in vitro and in vivo in a variety of models of acute insult. Collectively, results of these animal and tissue culture models suggest that the loss of both estrogens and progestins at the menopause makes the brain more vulnerable to acute insults and chronic neurodegenerative diseases. Further clinical assessment of appropriate regimens of estrogens, progestins and their combination are supported by these data.  相似文献   

19.
Differences in the prevalence and age of onset of Alzheimer disease (AD) in men and women, and observations that hormone replacement therapy (HRT) may prevent the development of AD, caused many to hypothesize that estrogen deficiency contributes to AD. However, recent trials using estrogen failed to show any benefit in preventing or alleviating the disease. To address this and other inconsistencies in the estrogen hypothesis, we suspect that another hormone of the hypothalamic-pituitary-gonadal axis, luteinizing hormone (LH), as a major factor in AD pathogenesis. Individuals with AD have elevated levels of LH when compared with controls, and both LH and its receptor are present in increased quantities in brain regions susceptible to degeneration in AD. LH is also known to be mitogenic, and could therefore initiate the cell cycle abnormalities known to be present in AD-affected neurons. In cell culture, LH increases amyloidogenic processing of amyloid- protein precursor, and in animal models of AD, pharmacologic suppression of LH and FSH reduces plaque formation. Given the evidence supporting a pathogenic role for LH in AD, a trial of leuprolide acetate, which suppresses LH release, has been initiated in patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号