首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
The AID enzyme induces class switch recombination in fibroblasts   总被引:14,自引:0,他引:14  
  相似文献   

3.
Circular DNA is a product of the immunoglobulin class switch rearrangement   总被引:24,自引:0,他引:24  
U von Schwedler  H M J?ck  M Wabl 《Nature》1990,345(6274):452-456
The class of immunoglobulin is defined by the constant region of its heavy chain. When a B lymphocyte switches the class of heavy chain it produces, the constant region of mu-type heavy chain is replaced; this occurs through a DNA rearrangement that brings the gene segment encoding the new constant region close to the VDJ segment encoding the variable region. The pre-B-cell line 18-81, which switches from heavy chain mu to gamma 2b production in culture, occasionally abnormally rearranges the heavy chain locus so that DNA sequences between the switch regions of mu and gamma 2b are inverted. Because looping-out is an intermediate step in generating an inversion, the switch rearrangement could occur by looping-out and deletion. Provided that recombination is reciprocal, this would produce a circle of DNA. Indeed, circular DNA molecules have been isolated as products of rearrangement among gene segments encoding the variable regions of the T-cell receptor and of the immunoglobulin heavy chain and light chain. But whereas the breakpoints for the variable region rearrangement are precisely defined, the breakpoints for any given heavy chain class switch are scattered over a length of greater than 6 kilobases, including both switch regions. We have now isolated circular DNA containing the sequences deleted by class-switching, thereby showing that the immunoglobulin heavy chain class switch occurs through looping-out and deletion.  相似文献   

4.
Immunoglobulin variable region exons are assembled in developing B cells by V(D)J recombination. Once mature, these cells undergo class-switch recombination (CSR) when activated by antigen. CSR changes the heavy chain constant region exons (Ch) expressed with a given variable region exon from Cmu to a downstream Ch (for example, Cgamma, Cepsilon or Calpha), thereby switching expression from IgM to IgG, IgE or IgA. Both V(D)J recombination and CSR involve the introduction of DNA double-strand breaks and their repair by means of end joining. For CSR, double-strand breaks are introduced into switch regions that flank Cmu and a downstream Ch, followed by fusion of the broken switch regions. In mammalian cells, the 'classical' non-homologous end joining (C-NHEJ) pathway repairs both general DNA double-strand breaks and programmed double-strand breaks generated by V(D)J recombination. C-NHEJ, as observed during V(D)J recombination, joins ends that lack homology to form 'direct' joins, and also joins ends with several base-pair homologies to form microhomology joins. CSR joins also display direct and microhomology joins, and CSR has been suggested to use C-NHEJ. Xrcc4 and DNA ligase IV (Lig4), which cooperatively catalyse the ligation step of C-NHEJ, are the most specific C-NHEJ factors; they are absolutely required for V(D)J recombination and have no known functions other than C-NHEJ. Here we assess whether C-NHEJ is also critical for CSR by assaying CSR in Xrcc4- or Lig4-deficient mouse B cells. C-NHEJ indeed catalyses CSR joins, because C-NHEJ-deficient B cells had decreased CSR and substantial levels of IgH locus (immunoglobulin heavy chain, encoded by Igh) chromosomal breaks. However, an alternative end-joining pathway, which is markedly biased towards microhomology joins, supports CSR at unexpectedly robust levels in C-NHEJ-deficient B cells. In the absence of C-NHEJ, this alternative end-joining pathway also frequently joins Igh locus breaks to other chromosomes to generate translocations.  相似文献   

5.
Chaudhuri J  Tian M  Khuong C  Chua K  Pinaud E  Alt FW 《Nature》2003,422(6933):726-730
  相似文献   

6.
7.
8.
在细胞内可变区基因(多样化基因)连接区基因片段重组(variable(diversity)joining recombination,V(D)J)与免疫球蛋白的类别转换重组(class switch recombination,CSR)过程中会产生程序性DNA双链断裂(DNA double strand break,DSB).当检测到DSB发生时DNA损伤反应(DNA damage response,DDR)被启动.DDR缺陷的病人具有原发性免疫缺陷表型(primary immunodeficiency,PID).总结了V(D)J重组与CSR产生DDR的分子机制,综述了V(D)J重组与CSR过程中DDR相关蛋白缺陷引起的原发性免疫缺陷表型.  相似文献   

9.
Chromosomal translocations involving the immunoglobulin switch region are a hallmark feature of B-cell malignancies. However, little is known about the molecular mechanism by which primary B cells acquire or guard against these lesions. Here we find that translocations between c-myc and the IgH locus (Igh) are induced in primary B cells within hours of expression of the catalytically active form of activation-induced cytidine deaminase (AID), an enzyme that deaminates cytosine to produce uracil in DNA. Translocation also requires uracil DNA glycosylase (UNG), which removes uracil from DNA to create abasic sites that are then processed to double-strand breaks. The pathway that mediates aberrant joining of c-myc and Igh differs from intrachromosomal repair during immunoglobulin class switch recombination in that it does not require histone H2AX, p53 binding protein 1 (53BP1) or the non-homologous end-joining protein Ku80. In addition, translocations are inhibited by the tumour suppressors ATM, Nbs1, p19 (Arf) and p53, which is consistent with activation of DNA damage- and oncogenic stress-induced checkpoints during physiological class switching. Finally, we demonstrate that accumulation of AID-dependent, IgH-associated chromosomal lesions is not sufficient to enhance c-myc-Igh translocations. Our findings reveal a pathway for surveillance and protection against AID-dependent DNA damage, leading to chromosomal translocations.  相似文献   

10.
Class switch recombination (CSR) is a region-specific DNA recombination reaction that replaces one immunoglobulin heavy-chain constant region (Ch) gene with another. This enables a single variable (V) region gene to be used in conjunction with different downstream Ch genes, each having a unique biological activity. The molecular mechanisms that mediate CSR have not been defined, but activation-induced cytidine deaminase (AID), a putative RNA-editing enzyme, is required for this reaction. Here we report that the Nijmegen breakage syndrome protein (Nbs1) and phosphorylated H2A histone family member X (gamma-H2AX, also known as gamma-H2afx), which facilitate DNA double-strand break (DSB) repair, form nuclear foci at the Ch region in the G1 phase of the cell cycle in cells undergoing CSR, and that switching is impaired in H2AX-/- mice. Localization of Nbs1 and gamma-H2AX to the Igh locus during CSR is dependent on AID. In addition, AID is required for induction of switch region (S mu)-specific DNA lesions that precede CSR. These results place AID function upstream of the DNA modifications that initiate CSR.  相似文献   

11.
After gene rearrangement, immunoglobulin variable genes are diversified by somatic hypermutation or gene conversion, whereas the constant region is altered by class-switch recombination. All three processes depend on activation-induced cytidine deaminase (AID), a B-cell-specific protein that has been proposed (because of sequence homology) to function by RNA editing. But indications that the three gene diversification processes might be initiated by a common type of DNA lesion, together with the proposal that there is a first phase of hypermutation that targets dC/dG, suggested to us that AID may function directly at dC/dG pairs. Here we show that expression of AID in Escherichia coli gives a mutator phenotype that yields nucleotide transitions at dC/dG in a context-dependent manner. Mutation triggered by AID is enhanced by a deficiency of uracil-DNA glycosylase, which indicates that AID functions by deaminating dC residues in DNA. We propose that diversification of functional immunoglobulin genes is triggered by AID-mediated deamination of dC residues in the immunoglobulin locus with the outcome--that is, hypermutation phases 1 and 2, gene conversion or switch recombination--dependent on the way in which the initiating dU/dG lesion is resolved.  相似文献   

12.
13.
The largest mucosal surface in the body is in the gastrointestinal tract, a location that is heavily colonized by microbes that are normally harmless. A key mechanism required for maintaining a homeostatic balance between this microbial burden and the lymphocytes that densely populate the gastrointestinal tract is the production and transepithelial transport of poly-reactive IgA (ref. 1). Within the mucosal tissues, B cells respond to cytokines, sometimes in the absence of T-cell help, undergo class switch recombination of their immunoglobulin receptor to IgA, and differentiate to become plasma cells. However, IgA-secreting plasma cells probably have additional attributes that are needed for coping with the tremendous bacterial load in the gastrointestinal tract. Here we report that mouse IgA(+) plasma cells also produce the antimicrobial mediators tumour-necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS), and express many molecules that are commonly associated with monocyte/granulocytic cell types. The development of iNOS-producing IgA(+) plasma cells can be recapitulated in vitro in the presence of gut stroma, and the acquisition of this multifunctional phenotype in vivo and in vitro relies on microbial co-stimulation. Deletion of TNF-α and iNOS in B-lineage cells resulted in a reduction in IgA production, altered diversification of the gut microbiota and poor clearance of a gut-tropic pathogen. These findings reveal a novel adaptation to maintaining homeostasis in the gut, and extend the repertoire of protective responses exhibited by some B-lineage cells.  相似文献   

14.
H Sakano  K Hüppi  G Heinrich  S Tonegawa 《Nature》1979,280(5720):288-294
The entire nucleotide sequence of a 1.7-kilobase embryonic DNA fragment containing five joining (J) DNA segments for mouse immunoglobulin kappa chain gene has been determined. Each J DNA segment can encode amino acid residues 96--108. Comparison of one of the five J DNA sequences with those of an embryonic variable (V) gene and a complete kappa chain gene permitted localisation of a precise recombination site. The 5'-flanking regions of J DNA segments could form an inverted stem structure with the 3'-non-coding region of embryonic V genes. This hypothetical structure and gel-blotting analysis of total embryo and myeloma DNA suggest that the somatic recombination may be accompanied by excision of an entire DNA segment between a V gene and a J DNA segment. Antibody diversity may in part be generated by modulation of the precise recombination sites.  相似文献   

15.
16.
D Sen  W Gilbert 《Nature》1988,334(6180):364-366
We have discovered that single-stranded DNA containing short guanine-rich motifs will self-associate at physiological salt concentrations to make four-stranded structures in which the strands run in parallel fashion. We believe these complexes are held together by guanines bonded to each other by Hoogsteen pairing. Such guanine-rich sequences occur in immunoglobulin switch regions, in gene promoters, and in chromosomal telomeres. We speculate that this self-recognition of guanine-rich motifs of DNA serves to bring together, and to zipper up in register, the four homologous chromatids during meiosis.  相似文献   

17.
Cell-type-specific contacts to immunoglobulin enhancers in nuclei   总被引:3,自引:0,他引:3  
G M Church  A Ephrussi  W Gilbert  S Tonegawa 《Nature》1985,313(6005):798-801
  相似文献   

18.
Unusual sequences in the murine immunoglobulin mu-delta heavy-chain region   总被引:1,自引:0,他引:1  
The delta heavy (H) chain of mouse immunoglobulin D (IgD) is unusual both in its structure and in its differential expression relative to immunoglobulin M (IgM; reviewed in ref. 1). The region of DNA between IgM and IgD H-chain constant-region genes is probably implicated in this control. So far only fragments of the area have been sequenced. Now, however, we present the complete sequence as well as the sequence of the introns of the C delta gene. We have found several interesting features (Fig. 1), including an open reading frame (ORF) between Cmu and C delta which encodes 146 amino acids that might represent a previously unsuspected domain-like protein; three blocks of simple repetitive sequences; a 162-base pair (bp) unique-sequence inverted repeat; and a domain-like pseudogene in the large intron of C delta. We have not found, however, any sequence 5' of C delta resembling the switch (S) recombination sequences associated with class switching in other heavy chains. Moreover, we have determined the 3' deletion end point of an IgD-producing myeloma and find no sequences reminiscent of switch sites nearby.  相似文献   

19.
Basu U  Chaudhuri J  Alpert C  Dutt S  Ranganath S  Li G  Schrum JP  Manis JP  Alt FW 《Nature》2005,438(7067):508-511
Antibodies, which are produced by B-lineage cells, consist of immunoglobulin heavy (IgH) and light (IgL) chains that have amino-terminal variable regions and carboxy-terminal constant regions. In response to antigens, B cells undergo two types of genomic alterations to increase antibody diversity. Affinity for antigen can be increased by introduction of point mutations into IgH and IgL variable regions by somatic hypermutation. In addition, antibody effector functions can be altered by changing the expressed IgH constant region exons through IgH class switch recombination (CSR). Somatic hypermutation and CSR both require the B-cell-specific activation-induced cytidine deaminase protein (AID), which initiates these reactions through its single-stranded (ss)DNA-specific cytidine deaminase activity. In biochemical assays, replication protein A (RPA), a ssDNA-binding protein, associates with phosphorylated AID from activated B cells and enhances AID activity on transcribed double-stranded (ds)DNA containing somatic hypermutation or CSR target sequences. This AID-RPA association, which requires phosphorylation, may provide a mechanism for allowing AID to access dsDNA targets in activated B cells. Here we show that AID from B cells is phosphorylated on a consensus protein kinase A (PKA) site and that PKA is the physiological AID kinase. Thus, AID from non-lymphoid cells can be functionally phosphorylated by recombinant PKA to allow interaction with RPA and promote deamination of transcribed dsDNA substrates. Moreover, mutation of the major PKA phosphorylation site of AID preserves ssDNA deamination activity, but markedly reduces RPA-dependent dsDNA deamination activity and severely impairs the ability of AID to effect CSR in vivo. We conclude that PKA has a critical role in post-translational regulation of AID activity in B cells.  相似文献   

20.
M Wabl  J Meyer  G Beck-Engeser  M Tenkhoff  P D Burrows 《Nature》1985,313(6004):687-689
B lymphocytes may switch from producing an immunoglobulin heavy chain of the mu class to that of the gamma, epsilon or alpha class. To maintain the specificity, the new heavy chain must keep the original variable (V) region; this is achieved by deleting DNA sequences so that the V (consisting of joined VH, diversity (DH) and joining (JH) gene segments) and C (constant) gene segments coding for the new heavy chain are brought into close proximity (reviewed in ref. 5; we do not consider here the mu-delta situation). There are, in principle, three types of chromosomal rearrangements that yield a deletion: rearrangement within a chromatid; unequal sister chromatid exchange (as suggested by Obata et al.); and unequal recombination between chromosomal homologues. We have analysed the arrangement of C mu DNA in clones of the pre-B-cell line 18-81 that switches in vitro from mu to gamma 2b. The clones examined produce either mu, gamma 2b or no immunoglobulin chain. We report here that all the gamma 2b clones had lost at least one copy of C mu and no clones contained three copies of C mu. These findings formally exclude both unequal sister chromatid exchange and recombination between homologues as mechanisms for creating a gene encoding the gamma 2b chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号