首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The circadian clock exerts an important role in systemic homeostasis as it acts a keeper of time for the organism. The synchrony between the daily challenges imposed by the environment needs to be aligned with biological processes and with the internal circadian clock. In this review, it is provided an in-depth view of the molecular functioning of the circadian molecular clock, how this system is organized, and how central and peripheral clocks communicate with each other. In this sense, we provide an overview of the neuro-hormonal factors controlled by the central clock and how they affect peripheral tissues. We also evaluate signals released by peripheral organs and their effects in the central clock and other brain areas. Additionally, we evaluate a possible communication between peripheral tissues as a novel layer of circadian organization by reviewing recent studies in the literature. In the last section, we analyze how the circadian clock can modulate intracellular and tissue-dependent processes of metabolic organs. Taken altogether, the goal of this review is to provide a systemic and integrative view of the molecular clock function and organization with an emphasis in metabolic tissues.

  相似文献   

2.
Adult neurogenesis, the birth of new neurons in the mature brain, has attracted considerable attention in the last decade. One of the earliest identified and most profound factors that affect adult neurogenesis both positively and negatively is stress. Here, we review the complex interplay between stress and adult neurogenesis. In particular, we review the role of the glucocorticoid receptor, the main mediator of the stress response in the proliferation, differentiation, migration, and functional integration of newborn neurons in the hippocampus. We review a multitude of mechanisms regulating glucocorticoid receptor activity in relationship to adult neurogenesis. We postulate a novel concept in which the level of glucocorticoid receptor expression directly regulates the excitation-inhibition balance, which is key for proper neurogenesis. We furthermore argue that an excitation-inhibition dis-balance may underlie aberrant functional integration of newborn neurons that is associated with psychiatric and paroxysmal brain disorders.  相似文献   

3.
4.
5.
From carrot to clinic: an overview of the retinoic acid signaling pathway   总被引:1,自引:1,他引:0  
Vitamin A is essential for the formation and maintenance of many body tissues. It is also important for embryonic growth and development and can act as a teratogen at critical periods of development. Retinoic acid (RA) is the biologically active form of vitamin A and its signaling is mediated by the RA and retinoid X receptors. In addition to its role as an important molecule during development, RA has also been implicated in clinical applications, both as a potential anti-tumor agent as well as for the treatment of skin diseases. This review presents an overview of how dietary retinoids are converted to RA, hence presenting the major players in RA metabolism and signaling, and highlights examples of treatment applications of retinoids. Moreover, we discuss the origin and diversification of the retinoid pathway, which are important factors for understanding the evolution of ligand-specificity among retinoid receptors.  相似文献   

6.
The research field of fetal programming has developed tremendously over the years and increasing knowledge suggests that both maternal and paternal unbalanced diet can have long-lasting effects on the health of offspring. Studies implicate that macronutrients play an important role in fetal programming, although the importance of micronutrients is also becoming increasingly apparent. Folic acid and vitamins B2, B6 and B12 are essential for one-carbon metabolism and are involved in DNA methylation. They can therefore influence the programming of the offspring’s epigenome. Also, other micronutrients such as vitamins A and C, iron, chromium, zinc and flavonoids play a role in fetal programming. Since it is estimated that approximately 78 % of pregnant women in the US take vitamin supplements during pregnancy, more attention should be given to the long-term effects of these supplements on offspring. In this review we address several different studies which illustrate that an unbalanced diet prior and during pregnancy, regarding the intake of micronutrients of both mother and father, can have long-lasting effects on the health of adult offspring.  相似文献   

7.
Comparative studies of the genes involved in sex determination in the three extant classes of mammals, and other vertebrates, has allowed us to identify genes that are highly conserved in vertebrate sex determination and those that have recently evolved roles in one lineage. Analysis of the conservation and function of candidate genes in different vertebrate groups has been crucial to our understanding of their function and positioning in a conserved vertebrate sex-determining pathway. Here we review comparisons between genes in the sex-determining pathway in different vertebrates, and ask how these comparisons affect our views on the role of each gene in vertebrate sex determination.  相似文献   

8.
How Ras, and in particular its most abundant oncogenic isoform K-Ras4B, is activated and signals in proliferating cells, poses some of the most challenging questions in cancer cell biology. In this paper, we ask how intrinsically disordered regions in K-Ras4B and its effectors help promote proliferative signaling. Conformational disorder allows spanning long distances, supports hinge motions, promotes anchoring in membranes, permits segments to fulfil multiple roles, and broadly is crucial for activation mechanisms and intensified oncogenic signaling. Here, we provide an overview illustrating some of the key mechanisms through which conformational disorder can promote oncogenesis, with K-Ras4B signaling serving as an example. We discuss (1) GTP-bound KRas4B activation through membrane attachment; (2) how farnesylation and palmitoylation can promote isoform functional specificity; (3) calmodulin binding and PI3K activation; (4) how Ras activates its RASSF5 cofactor, thereby stimulating signaling of the Hippo pathway and repressing proliferation; and (5) how intrinsically disordered segments in Raf help its attachment to the membrane and activation. Collectively, we provide the first inclusive review of the roles of intrinsic protein disorder in oncogenic Ras-driven signaling. We believe that a broad picture helps to grasp and formulate key mechanisms in Ras cancer biology and assists in therapeutic intervention.  相似文献   

9.
Summary The effect of alterations of dietary potassium intake on the plasma concentration and the urinary excretion of vasopressin was studied in male rats. Ingestion of a high potassium diet resulted in increases in the plasma concentrations of potassium and vasopressin, systolic blood pressure, urine flow, and urinary vasopressin excretion. Ingestion of a low potassium diet had little effect on the plasma vasopressin concentration and systolic blood pressure but caused decreases in the plasma potassium concentration and urinary vasopressin excretion. The results indicate that physiological changes in the plasma potassium concentration or some other consequence of altered dietary potassium intake can affect vasopressin release and excretion.  相似文献   

10.
The effect of alterations of dietary potassium intake on the plasma concentration and the urinary excretion of vasopressin was studied in male rats. Ingestion of a high potassium diet resulted in increases in the plasma concentrations of potassium and vasopressin, systolic blood pressure, urine flow, and urinary vasopressin excretion. Ingestion of a low potassium diet had little effect on the plasma vasopressin concentration and systolic blood pressure but caused decreases in the plasma potassium concentration and urinary vasopressin excretion. The results indicate that physiological changes in the plasma potassium concentration or some other consequence of altered dietary potassium intake can affect vasopressin release and excretion.  相似文献   

11.
There are two barriers for iron entry into the brain: (1) the brain–cerebrospinal fluid (CSF) barrier and (2) the blood–brain barrier (BBB). Here, we review the literature on developmental iron accumulation by the brain, focusing on the transport of iron through the brain microvascular endothelial cells (BMVEC) of the BBB. We review the iron trafficking proteins which may be involved in the iron flux across BMVEC and discuss the plausible mechanisms of BMVEC iron uptake and efflux. We suggest a model for how BMVEC iron uptake and efflux are regulated and a mechanism by which the majority of iron is trafficked across the developing BBB under the direct guidance of neighboring astrocytes. Thus, we place brain iron uptake in the context of the neurovascular unit of the adult brain. Last, we propose that BMVEC iron is involved in the aggregation of amyloid-β peptides leading to the progression of cerebral amyloid angiopathy which often occurs prior to dementia and the onset of Alzheimer’s disease.  相似文献   

12.
13.
Holoprosencephaly, or an undivided forebrain, is a complex brain malformation associated with Sonic hedgehog (Shh) mutations. Other causes of holoprosencephaly have converged upon the Shh signaling pathway: genetic and pharmacologic impairment of cholesterol synthesis, and the action of the steroidal alkaloid cyclopamine. This review focuses on recent studies aimed at determining how Shh signaling is affected by these causes of holoprosencephaly, whether they involve a common mechanism and the role played by cholesterol. Cholesterol is potentially important for both biogenesis of Shh and in signal transduction in Shh-responsive cells. Teratogens that induce holoprosencephaly appear to affect Shh signal transduction rather than Shh biogenesis. Analysis of these agents and other compounds that affect various aspects of cellular cholesterol distribution indicates that the role of cholesterol in Shh signal transduction is novel and complicated. The similarity of the Shh receptor, Patched (Ptc), to the Niemann-Pick Cl protein, which is involved in the vesicular trafficking of cholesterol, provides insight into the role of cholesterol and the action of compounds like cyclopamine.  相似文献   

14.
Genetic factors affect sleep. Studies in twin pairs demonstrate that the strong hereditary influences on sleep architecture and some sleep disorders are transmitted through families. Evidence like this strongly suggests that sleep regulation receives significant influence from genetic factors. Although recent molecular technologies have revealed evidence that genetic traits or gene products trigger particular changes in sleep electroencephalogram activity, we are still far from finding candidate genes or multiple mutations responsible for individual sleep disorders. Sleep is a very complex phenotype. Genetic susceptibility and environmental factors should be also considered as contributors to sleep phenotype. The aim of this review is to present a current summary and future prospects for genetic studies on sleep and selected sleep-associated disorders. An erratum to this article is available at .  相似文献   

15.
An animal unable to synthesize ascorbic acid uniquely minicks human and non-human primates. Therefore, in this study we used the rainbow trout, a teleost fish, as the model animal to study the importance of dietary ascorbic acid on the fertilizing ability of sperm. A high concentration of ascorbic acid in semen plays a key role in maintaining the genetic integrity of sperm cells, by preventing oxidative damage to sperm DNA. This study will show that the concentration of asorbic acid in seminal plasma refelcts the dietary fed either an ascorbate-free diet (from 4.74±0.9 to 0.16±0.08 g ml–1) or an ascorbate-rich diet (from 37.9±4.7 to 17.7± 3.2 g ml–1) during the sperimnation season. The relationship between ascrobate status and fertility was studied in six groups of fish fed graded levels of ascorbic acid, which sperimated over a 150-day-period. Sperm from individual males was used to fertilize several batches of eggs. When the seminal plasma ascorbate concentration decreased to 7.3 g ml–1 a significant decrease of fertilization rate and the hatching rate of embryos resulted. This is the first evidence that dietary ascorbate level directly affected sperm quality and influenced male fertility in a scruvy-prone vertebrate.  相似文献   

16.
The cerebrospinal fluid (CSF) has attracted renewed interest as an active signaling milieu that regulates brain development, homeostasis, and disease. Advances in proteomics research have enabled an improved characterization of the CSF from development through adulthood, and key neurogenic signaling pathways that are transmitted via the CSF are now being elucidated. Due to its immediate contact with neural stem cells in the developing and adult brain, the CSF's ability to swiftly distribute signals across vast distances in the central nervous system is opening avenues to novel and exciting therapeutic approaches. In this review, we will discuss the development of the choroid plexus-CSF system, and review the current literature on how the CSF actively regulates mammalian brain development, behavior, and responses to traumatic brain injury.  相似文献   

17.
The brain is remarkable for its complex organization and functions, which have been historically assumed to arise from cells with identical genomes. However, recent studies have shown that the brain is in fact a complex genetic mosaic of aneuploid and euploid cells. The precise function of neural aneuploidy and mosaicism are currently being examined on multiple fronts that include contributions to cellular diversity, cellular signaling and diseases of the central nervous system (CNS). Constitutive aneuploidy in genetic diseases has proven roles in brain dysfunction, as observed in Down syndrome (trisomy 21) and mosaic variegated aneuploidy. The existence of aneuploid cells within normal individuals raises the possibility that these cells might have distinct functions in the normal and diseased brain, the latter contributing to sporadic CNS disorders including cancer. Here we review what is known about neural aneuploidy, and offer speculations on its role in diseases of the brain. Received 13 April 2006; received after revision 2 June 2006; accepted 13 July 2006  相似文献   

18.
Cellular information is inherited by daughter cells through epigenetic routes in addition to genetic routes. Epigenetics, which is primarily mediated by inheritable DNA methylation and histone post-translational modifications, involves changes in the chromatin structure important for regulating gene expression. It is widely known that epigenetic control of gene expression plays an essential role in cell differentiation processes in vertebrates. Furthermore, because epigenetic changes can occur reversibly depending on environmental factors in differentiated cells, they have recently attracted considerable attention as targets for disease prevention and treatment. These environmental factors include diet, exposure to bacteria or viruses, and air pollution, of which this review focuses on the influence of bacteria on epigenetic gene control in a host. Host-bacterial interactions not only occur upon pathogenic bacterial infection but also continuously exist between commensal bacteria and the host. These bacterial stimuli play an essential role in various biological responses involving external stimuli and in maintaining physiological homeostasis by altering epigenetic markers and machinery.  相似文献   

19.
20.
Summary Fibrous material is an integral part of the daily diet, and it exerts direct physiological effects throughout the gastrointestinal tract, in addition to affecting metabolic activities more indirectly. The interplay of these effects is responsible for the presumed desirable influence of fibre on weight regulation, carbohydrate and lipid metabolism, and on colon function. Numerous mechanisms of action have been identified which are related to the type and the physicochemical nature of the fibre. This review concentrates mainly on the serum cholesterol-lowering effect of dietary fibre, its colonic fermentation, and finally on some possible adverse effects that one should be aware of when consuming high amounts of dietary fibre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号