首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The roots of most higher plants form arbuscular mycorrhiza, an ancient, phosphate-acquiring symbiosis with fungi, whereas only four related plant orders are able to engage in the evolutionary younger nitrogen-fixing root-nodule symbiosis with bacteria. Plant symbioses with bacteria and fungi require a set of common signal transduction components that redirect root cell development. Here we present two highly homologous genes from Lotus japonicus, CASTOR and POLLUX, that are indispensable for microbial admission into plant cells and act upstream of intracellular calcium spiking, one of the earliest plant responses to symbiotic stimulation. Surprisingly, both twin proteins are localized in the plastids of root cells, indicating a previously unrecognized role of this ancient endosymbiont in controlling intracellular symbioses that evolved more recently.  相似文献   

2.
Rosebrock TR  Zeng L  Brady JJ  Abramovitch RB  Xiao F  Martin GB 《Nature》2007,448(7151):370-374
Many bacterial pathogens of plants and animals use a type III secretion system to deliver diverse virulence-associated 'effector' proteins into the host cell. The mechanisms by which these effectors act are mostly unknown; however, they often promote disease by suppressing host immunity. One type III effector, AvrPtoB, expressed by the plant pathogen Pseudomonas syringae pv. tomato, has a carboxy-terminal domain that is an E3 ubiquitin ligase. Deletion of this domain allows an amino-terminal region of AvrPtoB (AvrPtoB(1-387)) to be detected by certain tomato varieties leading to immunity-associated programmed cell death. Here we show that a host kinase, Fen, physically interacts with AvrPtoB(1-387 )and is responsible for activating the plant immune response. The AvrPtoB E3 ligase specifically ubiquitinates Fen and promotes its degradation in a proteasome-dependent manner. This degradation leads to disease susceptibility in Fen-expressing tomato lines. Various wild species of tomato were found to exhibit immunity in response to AvrPtoB(1-387 )and not to full-length AvrPtoB. Thus, by acquiring an E3 ligase domain, AvrPtoB has thwarted a highly conserved host resistance mechanism.  相似文献   

3.
A protein sensitive to N-ethylmaleimide catalyses the fusion of transport vesicles with Golgi cisternae in a mammalian cell-free system. By cloning and sequencing its gene from Chinese hamster ovary cells and by use of in vitro assays, we show that this fusion protein is equivalent to the SEC18 gene product of the yeast Saccharomyces cerevisiae, known to be essential for vesicle-mediated transport from the endoplasmic reticulum to the Golgi apparatus. The mechanism of vesicular fusion is thus highly conserved, both between species and at different stages of transport.  相似文献   

4.
The glyoxylate cycle is required for fungal virulence.   总被引:49,自引:0,他引:49  
M C Lorenz  G R Fink 《Nature》2001,412(6842):83-86
Candida albicans, a normal component of the mammalian gastrointestinal flora, is responsible for most fungal infections in immunosuppressed patients. Candida is normally phagocytosed by macrophages and neutrophils, which secrete cytokines and induce hyphal development in this fungus. Neutropenic patients, deficient in these immune cells, are particularly susceptible to systemic candidiasis. Here we use genome-wide expression profiles of the related yeast Saccharomyces cerevisiae to obtain a signature of the events that take place in the fungus on ingestion by a mammalian macrophage. Live S. cerevisiae cells isolated from the phagolysosome are induced for genes of the glyoxylate cycle, a metabolic pathway that permits the use of two-carbon compounds as carbon sources. In C. albicans, phagocytosis also upregulates the principal enzymes of the glyoxylate cycle, isocitrate lyase (ICL1) and malate synthase (MLS1). Candida albicans mutants lacking ICL1 are markedly less virulent in mice than the wild type. These findings in fungi, in conjunction with reports that isocitrate lyase is both upregulated and required for the virulence of Mycobacterium tuberculosis, demonstrate the wide-ranging significance of the glyoxylate cycle in microbial pathogenesis.  相似文献   

5.
6.
具有反馈控制和Allee效应的偏利共生模型,其动力学行为比较复杂 .在反馈控制偏利共生模型的基础上,研究加法Allee效应对系统的动力学行为的影响,证明了系统正平衡点存在的条件足以保证系统的全局吸引性 .通过构造适当的Lyapunov函数,得到平衡点全局稳定的充分条件.研究表明:Allee效应不影响反馈控制偏利共生系统平衡点的稳定性,但会影响平衡点的位置.  相似文献   

7.
为了揭示富亮氨酸重复类受体蛋白激酶(LRR-RLKs)家族成员OsLPR1在水稻生长发育与抗逆性中的功能,利用反向遗传学方法构建了OsLPR1的RNAi载体,将其导入野生型水稻中获得转基因植株,观察表型并且分析OsLPR1基因在野生型和转基因植株中的表达情况.在表型观察中发现RNAi转基因植株出现白化苗.进一步的RT-PCR分析发现,白化苗中目的基因OsLPR1的表达量明显偏低,野生型中的表达量则较高,这表明OsLPR1基因表达异常会导致水稻出现白化现象.另外,还分析了OsLPR1的组织特异性表达,结果表明,OsLPR1在不同的组织器官中均有表达,但在叶片及叶鞘中高表达,这说明该基因可能与水稻叶片的生长发育有关.  相似文献   

8.
In legumes, root nodule organogenesis is activated in response to morphogenic lipochitin oligosaccharides that are synthesized by bacteria, commonly known as rhizobia. Successful symbiotic interaction results in the formation of highly specialized organs called root nodules, which provide a unique environment for symbiotic nitrogen fixation. In wild-type plants the number of nodules is regulated by a signalling mechanism integrating environmental and developmental cues to arrest most rhizobial infections within the susceptible zone of the root. Furthermore, a feedback mechanism controls the temporal and spatial susceptibility to infection of the root system. This mechanism is referred to as autoregulation of nodulation, as earlier nodulation events inhibit nodulation of younger root tissues. Lotus japonicus plants homozygous for a mutation in the hypernodulation aberrant root (har1) locus escape this regulation and form an excessive number of nodules. Here we report the molecular cloning and expression analysis of the HAR1 gene and the pea orthologue, Pisum sativum, SYM29. HAR1 encodes a putative serine/threonine receptor kinase, which is required for shoot-controlled regulation of root growth, nodule number, and for nitrate sensitivity of symbiotic development.  相似文献   

9.
Zinc oxide nanoparticles are known to be one of the multifunctional inorganic nanoparticles with effective antibacterial activity. This study aims to determine the antimicrobial efficacy of green and chemical synthesized ZnO nanoparticle against various bacterial and fungal pathogens. Various microbiological tests were performed using varying concentrations of green and chemical ZnO NPs with sizes 40 and 25 nm respectively. Results prove that green ZnO nanoparticles show more enhanced biocidal activity against various pathogens when compared to chemical ZnO nanoparticles. Also effectiveness of nanoparticles increases with increasing particle dose, treatment time and synthesis method. In addition, the current study has clearly demonstrated that the particle size variation and surface area to volume ratio of green ZnO nanoparticle are responsible for significant higher antimicrobial activity. From the results obtained it is suggested that green ZnO NPs could be used effectively in agricultural and food safety applications and also can address future medical concerns.  相似文献   

10.
Emerging fungal threats to animal, plant and ecosystem health   总被引:7,自引:0,他引:7  
The past two decades have seen an increasing number of virulent infectious diseases in natural populations and managed landscapes. In both animals and plants, an unprecedented number of fungal and fungal-like diseases have recently caused some of the most severe die-offs and extinctions ever witnessed in wild species, and are jeopardizing food security. Human activity is intensifying fungal disease dispersal by modifying natural environments and thus creating new opportunities for evolution. We argue that nascent fungal infections will cause increasing attrition of biodiversity, with wider implications for human and ecosystem health, unless steps are taken to tighten biosecurity worldwide.  相似文献   

11.
Savaldi-Goldstein S  Peto C  Chory J 《Nature》2007,446(7132):199-202
The size of an organism is genetically determined, yet how a plant or animal achieves its final size is largely unknown. The shoot of higher plants has a simple conserved body plan based on three major tissue systems: the epidermal (L1), sub-epidermal (L2) and inner ground and vascular (L3) tissues. Which tissue system drives or restricts growth has been a subject of debate for over a century. Here, we use dwarf, brassinosteroid biosynthesis and brassinosteroid response mutants in conjunction with tissue-specific expression of these components as tools to examine the role of the epidermis in shoot growth. We show that expression of the brassinosteroid receptor or a brassinosteroid biosynthetic enzyme in the epidermis, but not in the vasculature, of null mutants is sufficient to rescue their dwarf phenotypes. Brassinosteroid signalling from the epidermis is not sufficient to establish normal vascular organization. Moreover, shoot growth is restricted when brassinosteroids are depleted from the epidermis and brassinosteroids act locally within a leaf. We conclude that the epidermis both promotes and restricts shoot growth by providing a non-autonomous signal to the ground tissues.  相似文献   

12.
R Rowley  J Hudson  P G Young 《Nature》1992,356(6367):353-355
Cellular feedback or 'checkpoint' mechanisms maintain the order of completion of essential, cell-cycle related functions. In the budding yeast, for example, the RAD9 gene product is required to delay progression into mitosis in response to DNA damage. Similarly, in fission yeast, the cdc25 and cdc2 gene products influence the ability of cells to delay mitosis in response to the inhibition of DNA synthesis. Because these two checkpoint controls regulate the same event, mitosis, we observed the effect of gamma-irradiation on cell cycle progression in fission yeast, to test whether the two controls require the same cell-cycle regulatory elements. We show that gamma-radiation-induced mitotic delay requires functional wee1 protein kinase but does not seem to involve the cdc25 pathway. Mitotic delay in response to DNA damage is thus distinct from the delay induced by inhibition of DNA synthesis, which involves cdc25 but is not dependent on wee1.  相似文献   

13.
M C Wildermuth  J Dewdney  G Wu  F M Ausubel 《Nature》2001,414(6863):562-565
Salicylic acid (SA) mediates plant defences against pathogens, accumulating in both infected and distal leaves in response to pathogen attack. Pathogenesis-related gene expression and the synthesis of defensive compounds associated with both local and systemic acquired resistance (LAR and SAR) in plants require SA. In Arabidopsis, exogenous application of SA suffices to establish SAR, resulting in enhanced resistance to a variety of pathogens. However, despite its importance in plant defence against pathogens, SA biosynthesis is not well defined. Previous work has suggested that plants synthesize SA from phenylalanine; however, SA could still be produced when this pathway was inhibited, and the specific activity of radiolabelled SA in feeding experiments was often lower than expected. Some bacteria such as Pseudomonas aeruginosa synthesize SA using isochorismate synthase (ICS) and pyruvate lyase. Here we show, by cloning and characterizing an Arabidopsis defence-related gene (SID2) defined by mutation, that SA is synthesized from chorismate by means of ICS, and that SA made by this pathway is required for LAR and SAR responses.  相似文献   

14.
Homologous plant and bacterial proteins chaperone oligomeric protein assembly   总被引:190,自引:0,他引:190  
An abundant chloroplast protein is implicated in the assembly of the oligomeric enzyme ribulose bisphosphate carboxylase-oxygenase, which catalyses photosynthetic CO2-fixation in higher plants. The product of the Escherichia coli groEL gene is essential for cell viability and is required for the assembly of bacteriophage capsids. Sequencing of the groEL gene and the complementary cDNA encoding the chloroplast protein has revealed that these proteins are evolutionary homologues which we term 'chaperonins'. Chaperonins comprise a class of molecular chaperones that are found in chloroplasts, mitochondria and prokaryotes. Assisted post-translational assembly of oligomeric protein structures is emerging as a general cellular phenomenon.  相似文献   

15.
Repair of DNA damage is essential for maintaining genome integrity, and repair deficiencies in mammals are associated with cancer, neurological disease and developmental defects. Alkylation damage in DNA is repaired by at least three different mechanisms, including damage reversal by oxidative demethylation of 1-methyladenine and 3-methylcytosine by Escherichia coli AlkB. By contrast, little is known about consequences and cellular handling of alkylation damage to RNA. Here we show that two human AlkB homologues, hABH2 and hABH3, also are oxidative DNA demethylases and that AlkB and hABH3, but not hABH2, also repair RNA. Whereas AlkB and hABH3 prefer single-stranded nucleic acids, hABH2 acts more efficiently on double-stranded DNA. In addition, AlkB and hABH3 expressed in E. coli reactivate methylated RNA bacteriophage MS2 in vivo, illustrating the biological relevance of this repair activity and establishing RNA repair as a potentially important defence mechanism in living cells. The different catalytic properties and the different subnuclear localization patterns shown by the human homologues indicate that hABH2 and hABH3 have distinct roles in the cellular response to alkylation damage.  相似文献   

16.
细菌群体感应机制与动植物病原菌的致病力   总被引:2,自引:0,他引:2  
N 酰基高丝氨酸内酯 (AHLs)作为信号分子介导的细菌群体感应机制参与许多生物学功能的调节 ,当侵染动植物寄主组织的病原菌繁殖到一定量时 ,细菌本身产生的AHLs积累到临界浓度 ,AHLs与胞内特异受体结合 ,启动致病因子的表达。利用AHLs降解酶和AHLs类似物的特性 ,干扰和破坏病原菌的AHLs 群体感应机制 ,将为利用现代生物技术防治此类细菌病害开辟了一条全新的途径  相似文献   

17.
工业共生网络的复杂性度量及案例分析   总被引:3,自引:0,他引:3  
以物质/能量关联所刻画的工业共生网络是否具有复杂性特征是工业生态学领域值得探讨的重要问题.运用网络复杂性度量方法,以丹麦Kalundborg和河南省巩义市为案例,分析了区域工业共生网络的复杂性特征.分析结果表明:Kalundborg系统不体现复杂性,而巩义市系统则体现复杂性;与真实世界中很多复杂网络的度量结果相一致,巩义市工业共生系统体现出小世界性和无标度性,且高度数节点出现几率高于普通复杂网络;根据度量指标测算结果,巩义市工业共生系统与某些神经网络、代谢网络和生态链网具有相似性.  相似文献   

18.
Hsu LC  Park JM  Zhang K  Luo JL  Maeda S  Kaufman RJ  Eckmann L  Guiney DG  Karin M 《Nature》2004,428(6980):341-345
Macrophages are pivotal constituents of the innate immune system, vital for recognition and elimination of microbial pathogens. Macrophages use Toll-like receptors (TLRs) to detect pathogen-associated molecular patterns--including bacterial cell wall components, such as lipopolysaccharide or lipoteichoic acid, and viral nucleic acids, such as double-stranded (ds)RNA--and in turn activate effector functions, including anti-apoptotic signalling pathways. Certain pathogens, however, such as Salmonella spp., Shigellae spp. and Yersiniae spp., use specialized virulence factors to overcome these protective responses and induce macrophage apoptosis. We found that the anthrax bacterium, Bacillus anthracis, selectively induces apoptosis of activated macrophages through its lethal toxin, which prevents activation of the anti-apoptotic p38 mitogen-activated protein kinase. We now demonstrate that macrophage apoptosis by three different bacterial pathogens depends on activation of TLR4. Dissection of anti- and pro-apoptotic signalling events triggered by TLR4 identified the dsRNA responsive protein kinase PKR as a critical mediator of pathogen-induced macrophage apoptosis. The pro-apoptotic actions of PKR are mediated both through inhibition of protein synthesis and activation of interferon response factor 3.  相似文献   

19.
Xing W  Zou Y  Liu Q  Liu J  Luo X  Huang Q  Chen S  Zhu L  Bi R  Hao Q  Wu JW  Zhou JM  Chai J 《Nature》2007,449(7159):243-247
Pathogenic microbes use effectors to enhance susceptibility in host plants. However, plants have evolved a sophisticated immune system to detect these effectors using cognate disease resistance proteins, a recognition that is highly specific, often elicits rapid and localized cell death, known as a hypersensitive response, and thus potentially limits pathogen growth. Despite numerous genetic and biochemical studies on the interactions between pathogen effector proteins and plant resistance proteins, the structural bases for such interactions remain elusive. The direct interaction between the tomato protein kinase Pto and the Pseudomonas syringae effector protein AvrPto is known to trigger disease resistance and programmed cell death through the nucleotide-binding site/leucine-rich repeat (NBS-LRR) class of disease resistance protein Prf. Here we present the crystal structure of an AvrPto-Pto complex. Contrary to the widely held hypothesis that AvrPto activates Pto kinase activity, our structural and biochemical analyses demonstrated that AvrPto is an inhibitor of Pto kinase in vitro. The AvrPto-Pto interaction is mediated by the phosphorylation-stabilized P+1 loop and a second loop in Pto, both of which negatively regulate the Prf-mediated defences in the absence of AvrPto in tomato plants. Together, our results show that AvrPto derepresses host defences by interacting with the two defence-inhibition loops of Pto.  相似文献   

20.
Stomatal pores, formed by two surrounding guard cells in the epidermis of plant leaves, allow influx of atmospheric carbon dioxide in exchange for transpirational water loss. Stomata also restrict the entry of ozone--an important air pollutant that has an increasingly negative impact on crop yields, and thus global carbon fixation and climate change. The aperture of stomatal pores is regulated by the transport of osmotically active ions and metabolites across guard cell membranes. Despite the vital role of guard cells in controlling plant water loss, ozone sensitivity and CO2 supply, the genes encoding some of the main regulators of stomatal movements remain unknown. It has been proposed that guard cell anion channels function as important regulators of stomatal closure and are essential in mediating stomatal responses to physiological and stress stimuli. However, the genes encoding membrane proteins that mediate guard cell anion efflux have not yet been identified. Here we report the mapping and characterization of an ozone-sensitive Arabidopsis thaliana mutant, slac1. We show that SLAC1 (SLOW ANION CHANNEL-ASSOCIATED 1) is preferentially expressed in guard cells and encodes a distant homologue of fungal and bacterial dicarboxylate/malic acid transport proteins. The plasma membrane protein SLAC1 is essential for stomatal closure in response to CO2, abscisic acid, ozone, light/dark transitions, humidity change, calcium ions, hydrogen peroxide and nitric oxide. Mutations in SLAC1 impair slow (S-type) anion channel currents that are activated by cytosolic Ca2+ and abscisic acid, but do not affect rapid (R-type) anion channel currents or Ca2+ channel function. A low homology of SLAC1 to bacterial and fungal organic acid transport proteins, and the permeability of S-type anion channels to malate suggest a vital role for SLAC1 in the function of S-type anion channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号