首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several serine proteases including thrombin, tissue-type plasminogen activator and urokinase-type plasminogen activator have been well characterized in the brain. In this article, we review the brain-related trypsin and trypsin-like serine proteases. Accumulating evidence demonstrates that trypsin and trypsin-like serine proteases play very important roles in neural development, plasticity, neurodegeneration and neuroregeneration in the brain. Neuropsin is able to hydrolyze the extracellular matrix components by its active site serine, and regulates learning and memory in normal brain. The mutant neurotrypsin contributes to mental retardation in children. Neurosin seems to be involved in the pathogenesis of neurodegenerative disorders, like Alzheimer’s disease, Parkinson’s disease or multiple sclerosis. Although mesotrypsin/trypsin IV is also implicated in neurodegeneration, its functional significance still remains largely unknown. Particularly, mesotrypsin/trypsin IV, P22 and neurosin exert their physiological and pathological functions through activation of certain protease-activated receptors (PARs). In the brain, the presence of serpins controls the activity of serine proteases. Therefore, understanding the interaction among brain trypsin, serpins and PARs will provide invaluable tools for regulating normal brain functions and for the clinical treatment of neural disorders. Y. Wang, W. Luo: These authors made equal contributions. Received 26 June 2007; received after revision 13 August 2007; accepted 12 September 2007  相似文献   

2.
Lecticans: organizers of the brain extracellular matrix   总被引:19,自引:0,他引:19  
Lecticans are a family of chondroitin sulfate proteoglycans, encompassing aggrecan, versican, neurocan and brevican. These proteoglycans are characterized by the presence of ahyaluronan-binding domain and a C-type lectin domain in their core proteins. Through these domains, lecticans interact with carbohydrate and protein ligands in the extracellular matrix and act as linkers of these extracellular matrix molecules. In adult brain, lecticans are thought to interact with hyaluronan and tenascin-R to form a ternary complex. We propose that the hyaluronan-lectican-tenascin-R complex constitutes the core assembly of the adult brain extracellular matrix, which is found mainly in pericellular spaces of neurons as ‘perineuronal nets’. Received 27 September 1999; accepted 26 October 1999  相似文献   

3.
Summary This brief review evaluates the expression of cell-specific markers on differentiated neural cells and, where necessary, on their developing precursors. Within these limitations only the commonly used markers are discussed and those deemed unequivocal are only briefly appraised.  相似文献   

4.
Ethanol inhibits insulin expression and actions in the developing brain   总被引:4,自引:0,他引:4  
Ethanol-induced cerebellar hypoplasia is associated with inhibition of insulin-stimulated survival signaling. The present work explores the mechanisms of impaired insulin signaling in a rat model of fetal alcohol syndrome. Real-time quantitative RT-PCR demonstrated reduced expression of the insulin gene in cerebella of ethanol-exposed pups. Although receptor expression was unaffected, insulin and insulin-like growth factor (IGF-I) receptor tyrosine kinase (RTK) activities were reduced by ethanol exposure, and these abnormalities were associated with increased PTP1b activity. In addition, glucose transporter molecule expression and steady-state levels of ATP were reduced in ethanol-exposed cerebellar tissue. Cultured cerebellar granule neurons from ethanol-exposed pups had reduced expression of genes encoding insulin, IGF-II, and the IGF-I and IGF-II receptors, and impaired insulin- and IGF-I-stimulated glucose uptake and ATP production. The results demonstrate that ethanol inhibits insulin-mediated actions in the developing brain by reducing local insulin production and insulin RTK activation, leading to inhibition of glucose transport and ATP production.Received 30 December 2004; received after revision 1 March 2005; accepted 10 March 2005  相似文献   

5.
6.
Summary The determination of neuronal fate in the developing cerebral cortex has been studied by tracking normal cell lineages in the cortex, and by testing the commitment of young cortical neurons to their normal fates. These studies together suggest that neuronal progenitors are multipotent during development and have the potential to produce neurons destined for many or all of the cortical layers. However, the laminar identity of an individual neuron appears to be specified through environmental interactions at the time of the cell's temrinal mitotic division, prior to its migration into the cortical plate.  相似文献   

7.
Summary Neuronal tissue containing A-6 group noradrenalin (NA) neurons of the locus ceruleus, or A-10 group dopamine (DA) neurons of the substantia nigra, was grafted into the third ventricle at the level of the preoptic-anterior hypothalamic region, in normotensive male rats. A significant and long-lasting depressor effect was shown in rats with either graft. In rats with an NA neuron-rich graft, plasma concentrations of arginine-vasopressin (AVP), plasma renin activity (PRA), and corticosterone (CS) decreased significantly, whereas in rats with a DA neuron-rich graft, AVP and PRA concentrations also decreased significantly but CS showed no significant change. Neither NA nor adrenalin in plasma changed significantly in rats with either graft.  相似文献   

8.
Identification of the bioactive peptide PEC-60 in brain   总被引:1,自引:0,他引:1  
PEC-60 is a 60-residue peptide originally isolated from pig intestine. It inhibits glucose-induced insulin secretion from perfused pancreas in a hormonal manner and also has biological activity in the immune system. PEC-60-like immunoreactive material has been reported in catecholamine neurons of the central and peripheral nervous systems, but the peptide has not been identified from that material. We have now isolated PEC-60 from pig and rat brains with a method that combines column purification procedures with the specificity of a radioimmunoassay and the sensitivity of mass spectrometry to directly identify the peptide. The results show that PEC-60, like many other peptides, is expressed in the gastrointestinal tract and the central nervous system. The specific regional brain distribution and interaction with classical neurotransmitters raise the possibility that PEC-60may play a role in the central nervous system disorders involving dopamine dysregulation. Received 6 December 2002; received after revision 10 December 2002; accepted 11 December 2002 RID="*" ID="*"Corresponding author.  相似文献   

9.
Toll-like receptors (TLRs) are a family of pattern recognition receptors that mediate innate immune responses to stimuli from pathogens or endogenous signals. Under various pathological conditions, the central nervous system (CNS) mounts a well-organized innate immune response, in which glial cells, in particular microglia, are activated. Further, the innate immune system has emerged as a promising target for therapeutic control of development and persistence of chronic pain. Especially, microglial cells respond to peripheral and central infection, injury, and other stressor signals arriving at the CNS and initiate a CNS immune activation that might contribute to chronic pain facilitation. In the orchestration of this limited immune reaction, TLRs on microglia appear to be most relevant in triggering and tailoring microglial activation, which might be a driving force of chronic pain. New therapeutic approaches targeting the CNS innate immune system may achieve the essential pharmacological control of chronic pain. Received 21 November 2006; received after revision 8 January 2007; accepted 7 February 2007  相似文献   

10.
Chronic gestational exposure to ethanol has profound adverse effects on brain development. In this regard, studies using in vitro models of ethanol exposure demonstrated impaired insulin signaling mechanisms associated with increased apoptosis and reduced mitochondrial function in neuronal cells. To determine the relevance of these findings to fetal alcohol syndrome, we examined mechanisms of insulin-stimulated neuronal survival and mitochondrial function using a rat model of chronic gestational exposure to ethanol. In ethanol-exposed pups, the cerebellar hemispheres were hypoplastic and exhibited increased apoptosis. Isolated cerebellar neurons were cultured to selectively evaluate insulin responsiveness. Gestational exposure to ethanol inhibited insulin-stimulated neuronal viability, mitochondrial function, Calcein AM retention (membrane integrity), and GAPDH expression, and increased dihydrorosamine fluorescence (oxidative stress) and pro-apoptosis gene expression (p53, Fas-receptor, and Fas-ligand). In addition, neuronal cultures generated from ethanol-exposed pups had reduced levels of insulin-stimulated Akt, GSK-3β, and BAD phosphorylation, and increased levels of non-phosphorylated (activated) GSK-3β and BAD protein expression. The aggregate results suggest that insulin-stimulated central nervous system neuronal survival mechanisms are significantly impaired by chronic gestational exposure to ethanol, and that the abnormalities in insulin signaling mechanisms persist in the early postnatal period, which is critical for brain development. Received 21 January 2002; received after revision 28 February 2002; accepted 25 March 2002  相似文献   

11.
Summary Both acute and chronic administration of morphine resulted in an increase in the percent cardiac output received by brain. However, various brain regions were affected differently by the drug treatments. The greatest increases in percent cardiac output received after chronic administration of morphine occurred in pons and cerebellum, while the greatest increases after acute administration occurred in cortex and midbrain. The changes found are in contrast with earlier studies which suggest that morphine has no effect on cerebral blood flow.  相似文献   

12.
Endocrine and environmental aspects of sex differentiation in fish   总被引:14,自引:0,他引:14  
This paper reviews the current knowledge concerning the endocrine and environmental regulations of both gonadal sex differentiation in gonochoristic and sex inversion in hermaphroditic fish. Within the central nervous system, gonadotropins seem to play a role in triggering sex inversion in hermaphroditic fish. In gonochorists, although potentially active around this period, the hypothalamo-pituitary axis is probably not involved in triggering sex differentiation. Although steroids and steroidogenic enzymes are probably not the initial triggers of sex differentiation, new data, including molecular approaches, have confirmed that they are key physiological steps in the regulation of this process. Environmental factors can strongly influence sex differentiation and sex inversion in gonochoristic and hermaphroditic fish, respectively. The most important environmental determinant of sex would appear to be temperature in the former species, and social factors in the latter. Interactions between environmental factors and genotype have been suggested for both gonochoristic and hermaphroditic fish.  相似文献   

13.
Summary Using thaw-mount autoradiography for steroid hormones, we obtained direct evidence for a nuclear localization of ecdysteroid binding sites in target organs of blowfly (Calliphora vicina) larvae. The binding sites revealed properties of ecdysteroid receptors. Endocrine cells of the ring gland were found to be target tissues of ecydysteroids. This observation provides morphological evidence for a network of complex interendocrine regulation. In the central nervous system receptorcontaining neurons were identified which include many, if not all, neurosecretory cells of the brain. A map of ecdysteroid sensitive cells of the larval brain is presented.  相似文献   

14.
Summary The discovery of neuropeptides in enteric neurons has revolutionized the study of the microcircuitry of the enteric nervous system. Form immunohistochemistry, it is now clear that some individual enteric neurons contain several different neuropeptides with or without other transmitter-specific markers and that these markers occur in various combinations. There is evidence from experiments in which nerve pathways are interrupted that populations of enteric neurons with different combinations of markers have different projection patterns, sending their processes to distinct targets using different routes. Correlations between the neurochemistry of enteric neurons and the types of synaptic inputs they receive are also beginning to emerge from electrophysiological studies. These findings imply that enteric neurons are chemically coded by the combinations of peptides and other transmitter-related substances they contain and that the coding of each population correlates with its role in the neuronal pathways that control gastrointestinal function.  相似文献   

15.
Summary Successive injections of lipopolysaccharide (LPS) either intravenously (i.v.) or intracerebroventricularly (i.c.v.) induced pyrogenic tolerance to LPS in rabbits. Tolerance was shown by a decrease of the magnitude of the fever response to repeated doses of LPS, irrespective of the route of pyrogen administration. A significantly greater and more dramatic decrease of the fever index, however, was observed in rabbits made tolerant to pyrogen given i.v. than when the pyrogen was given i.c.v. Transmission of the pyrogenic toleraance between brain and peripheral tissues, however, has not been ascertained.  相似文献   

16.
Neurotrophic factors are present in limiting quantities, and neurons that obtain an adequate supply of the required neurotrophic factor survive whereas those that compete unsuccessfully die. Analysis of null mutant mice for neurotrophins and Trk receptors as well as in vivo experiments in ovo in the chick applying exogenous neurotrophins or neutralising antisera have significantly increased knowledge of the roles they play during development. This review focuses on recent advances in understanding the various roles of neurotrophins in dorsal root ganglion sensory neuron development at different times in embryonic development - an early local role for differentiation of the sensory precursor cells and a later survival-promoting target-derived role for the mature neurons. Neurotrophic factors are present in limiting quantities, and neurons that obtain an adequate supply of the required neurotrophic factor survive whereas those that compete unsuccessfully die. Analysis of null mutant mice for neurotrophins and Trk receptors as well as in vivo experiments in ovo in the chick applying exogenous neurotrophins or neutralising antisera have significantly increased knowledge of the roles they play during development. This review focuses on recent advances in understanding the various roles of neurotrophins in dorsal root ganglion sensory neuron development at different times in embryonic development - an early local role for differentiation of the sensory precursor cells and a later survival-promoting target-derived role for the mature neurons.  相似文献   

17.
Glutamate (glu) an excitatory neurotransmitter amino acid, is present in high concentrations in the mammalian central nervous system and is the most abundant amino acid in our daily diet. In the present study the activities of lactate dehydrogenase (LDH) and glutamate dehydrogenase (GDH) were evaluated in the circumventricular organs (CVO) of the brain in 25-day-old rats following MSG administration at a dose of 4 mg/g b.wt during the first ten days of life. The results show the LDH activity increased to 265% of that in the control (p<0.001), whereas GDH activity was significantly decreased (p<0.05), The great elevation in LDH, a cytoplasmic marker enzyme, is apparently due to cytoskeletal changes brought about as a consequence of glu toxicity, whereas lowered GDH activity indicates altered glu homostasis in the blood-brain-barrier deficient areas following neonatal exposure to glu.  相似文献   

18.
Summary The effect of pre- and postnatal lead exposure on the development of the serotonergic system in striatum and brain stem was investigated. Serotonin and its metabolite 5-HIAA where determined by HPLC-EC. A significant decrease of 5-HT was detected in the brain stem at postnatal day 28. At both days 6 and 28 postnatal, 5-HIAA was reduced in striatum and brain stem. The results provide support to the hypothesis that developing 5-HT neurons are sensitive to relatively low levels of lead exposure.  相似文献   

19.
The activities of mitochondrial, manganese-containing superoxide dismutase (MnSOD) and cytoplasmic, copper-zinc-containing superoxide dismutase (CuZnSOD) were measured in subcellular fractions of whole brain homogenates prepared from intact and gonadectomized (GDX) male rats, untreated or treated subcutaneously (sc) with a single dose of 2 mg progesterone (P) and/or 5 g estradiol benzoate (EB). Neither MnSOD nor CuZnSOD was affected by the removal of the testes. Similarly, CuZnSOD activity was steady following systemic administration of P and/or EB to intact and GDX animals 2 h or 24 h prior to sacrifice. On the other hand, both P and EB suppressed MnSOD in the brain of either intact or GDX rats. These results suggest involvement of P and EB in the control of MnSOD activity in the brain of male rats.  相似文献   

20.
The introduction and development, over the last three decades, of magnetic resonance (MR) imaging and MR spectroscopy technology for in vivo studies of the human brain represents a truly remarkable achievement, with enormous scientific and clinical ramifications. These effectively non-invasive techniques allow for studies of the anatomy, the function and the metabolism of the living human brain. They have allowed for new understandings of how the healthy brain works and have provided insights into the mechanisms underlying multiple disease processes which affect the brain. Different MR techniques have been developed for studying anatomy, function and metabolism. The primary focus of this review is to describe these different methodologies and to briefly review how they are being employed to more fully appreciate the intricacies associated with the organ, which most distinctly differentiates the human species from the other animal forms on earth. Received 1 November 2005; received after revision 11 January 2006; accepted 25 January 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号