首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
文本挖掘研究进展   总被引:12,自引:0,他引:12  
数据挖掘是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地抽取出有价值的知识模式,以满足人们不同应用的需要.由于存储信息最多的自然形式就是文本,因此文本挖掘具有重要的意义.结合笔者研究工作,主要介绍了文本挖掘的研究内容,挖掘过程,挖掘算法及应用前景.  相似文献   

2.
本文首先介绍文本挖掘的定义及一般处理过程,重点探讨了文本分类与分类聚类等文本挖掘的关健技术。  相似文献   

3.
张筱丹 《科技信息》2009,(4):165-166
本文讨论了Web挖掘的种类,其中的web文本挖掘是重要组成部分;并重点分析了文本特征提取、文本分类、文本聚类等Web文本挖掘中的关键技术。  相似文献   

4.
文本挖掘综述   总被引:1,自引:0,他引:1  
杨霞  黄陈英 《科技信息》2009,(33):82-82,99
文本挖掘是对一个非结构化文本信息进行分析从而获取用户关心或感兴趣,有潜在实用价值知识的过程。本文首先介绍了文本挖掘的定义和研究现状,之后文本挖掘一般处理过程,着力于文本分类和文本聚类的一般过程,最后展望了今后的研究目标。  相似文献   

5.
文本挖掘技术研究   总被引:28,自引:0,他引:28  
文本挖掘是数据挖掘的重要内容之一,其应用十分广泛.对文本挖掘技术的基本概念和理论进行系统地归纳总结,首先给出了数据挖掘、文本挖掘和Web文本挖掘的基本概念及主要研究方向,然后分析了文本挖掘的过程和关键技术,最后对文本挖掘技术进行总结和展望.  相似文献   

6.
张晖  张艳 《科技信息》2007,(30):87-87
基于Web的文本挖掘是文本挖掘的一个重要的组成部分,本文对文本挖掘的主要过程如文本预处理、特征表示、特征提取等进行了讨论。  相似文献   

7.
随着互联网中信息的日益增长,通过文本挖掘,快速、准确地检索信息和分类信息成为人们日益迫切的要求,具有广泛的应用前景和实用价值.依据信息论的思想,从文档信息量变化的角度,对文本数据从概率角度来研究文本数据的聚类分析,研究信息量在层次聚类过程中所呈现的规律性,进而提出一种基于信息量模型的聚类分析算法.  相似文献   

8.
文本挖掘中的特征表示及聚类方法   总被引:1,自引:0,他引:1  
文本挖掘中特征表示函数的选择影响到特征词表达文本的能力 ,文中设计的评判函数可以比较准确地表达特征词的重要程度。采用K邻近算法对文本集进行聚类 ,产生了较好的聚类效果  相似文献   

9.
针对网络文本信息的安全性判别问题,采取改进的邻近分类算法挖掘文本.该改进邻近分类方法在传统方法定义分类特征的同时,起用共线性判别矩阵,对具有共线属性的特征合并处理.这种改进策略,不仅可以增加分类特征的准确性,也可以加快文本信息的分类进程.对Spambase语料库开展实验研究,从精度、召回率、联判度、误差4个维度对分类效果进行评价.结果显示:改进的邻近分类方法具有明显的优势,可以更加准确地区分安全文本和危险文本.  相似文献   

10.
Web文本聚类是文本挖掘的重要组成部分。该文章分析了Web文本挖掘的方法,通过比较现有的几种聚类算法之后,着重研究了一个基于DBSCAN的聚类算法.以及它在文本挖掘中的具体实现过程。  相似文献   

11.
在非结构化数据挖掘结构模型——发现特征子空间模型(DFSSM)——的运行机制下,提出了一种新的Web文本聚类算法——基于DFSSM的Web文本聚类(WTCDFSSM)算法.该算法具有自稳定性,无须外界给出评价函数;能够识别概念空间中最有意义的特征,抗噪声能力强.结合现代远程教育网应用背景实现了WTCDFSSM聚类算法.结果表明:该算法可以对各类远程教育站点上收集的文本资料信息自动进行聚类挖掘;采用网格结构模型,帮助人们进行文本信息导航;从海量文本信息源中快速有效地获取重要的知识.  相似文献   

12.
投诉识别系统在保证热点投诉正确分类、提高电信行业的服务质量中起到很重要的作用.由于电信行业的客户投诉有其特殊性,所有的投诉必须在很短的时间内分类完成,从而往往会发生导航分类错误的现象.提出了一套基于文本挖掘的模型,该模型能够智能地将热点投诉分类到正确的投诉导航上去.实验表明:该模型能够有效地进行投诉文本分类.  相似文献   

13.
为了对复杂文本挖掘进行聚类分析,提出了一种基于动态ISODATA的聚类算法,详细介绍了此算法的基本思想和具体的算法步骤,并最终给出了试验结果。  相似文献   

14.
提出了一种基于特征项扩展的中文文本分类方法.该方法首先对文档的特征词进行分析,然后利用HowNet抽取最能代表主题的特征义原,接着根据这些义原对特征项进行扩展,并赋予扩展的特征项适当权值来说明其描述能力.最后利用扩展的特征项集提取特征进行分类.该文重点研究了如何抽取特征义原,如何给扩展项设定一个合适的权值.实验证明,该文方法能增加有效的特征项的数目,使分类正确率和稳定性均得到提高.  相似文献   

15.
Web文本聚类是一种典型的无指导机器学习技术,目标是将站点上采集到的Web文本分成若干簇,使同一簇内的文本相似性最大,不同簇间的文本相似性最小.为了对原始粗糙的Web文本数据进行降维处理,在知识属性值的基础上,计算单个属性相对于属性集的重要性量化值,并根据属性重要性量化值对特征向量降维,并采用K-means算法对降维后的数据聚类,实验证明该方法缩短了聚类时间.  相似文献   

16.
Web文本聚类是一种典型的无指导机器学习技术,目标是将站点上采集到的Web文本分成若干簇,使同一簇内的文本相似性最大,不同簇间的文本相似性最小.为了对原始粗糙的Web文本数据进行降维处理,在知识属性值的基础上,计算单个属性相对于属性集的重要性量化值,并根据属性重要性量化值对特征向量降维,并采用K-means算法对降维后的数据聚类,实验证明该方法缩短了聚类时间.  相似文献   

17.
文本挖掘作为数据挖掘的重要研究领域,是检索有用文本信息的重要手段。通过对K-means聚类挖掘方法的基本原理和实现步骤的分析,发现随机选择聚类中心迭代初值、奇异点问题是制约其发展的技术瓶颈,针对该方法的不足,提出了一种基于均值密度中心估计的K-means聚类文本挖掘方法,采用基于均值密度的聚类中心初值估算取代原有方法的随机选取模式,设计自适应的邻域形状选择机制,用均值密度配合阈值消除奇异点。实验结果表明,提出的方法提高了K-means聚类方法的文本挖掘性能,使得文本挖掘查准率得到很大的提高,不仅强于一般K-means均值聚类方法,且和新近流行的自组织神经网络聚类方法相比也具有一定的优势。  相似文献   

18.
Feature selection methods have been successfully applied to text categorization but seldom applied to text clustering due to the unavailability of class label information. In this paper, a new feature selection method for text clustering based on expectation maximization and cluster validity is proposed. It uses supervised feature selection method on the intermediate clustering result which is generated during iterative clustering to do feature selection for text clustering; meanwhile, the Davies-Bouldin's index is used to evaluate the intermediate feature subsets indirectly. Then feature subsets are selected according to the curve of the Davies-Bouldin's index. Experiment is carried out on several popular datasets and the results show the advantages of the proposed method.  相似文献   

19.
文本聚类的关键是对高维的特征集进行降维.本文对常用的一些特征选择、特征抽取等主流特征降维方法进行了介绍,分析了它们各自的特点及其适用范围.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号