首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
我省松树资源十分丰富,不少地区利用这一资源生产松香的同时,有大量副产物松节油产生,为充分利用这一资源,开展综合利用研究,笔者以气相色谱内标定量法对思茅、文山两地区八个县所产松节油及松脂进行α-蒎烯、β-蒎烯含量测定。 样品采自墨江(1—4~#)、普洱(5—8~#)、思茅(9—13~#)、景谷(14—18~#)、镇源(19—22~#)、景东(23—26~#)、广南(27~#)、丘北(28—34~#)等八县,计21个采样点。其中松节油样13个;松脂样17个;新鲜树干样品4个。属思茅松样品26个,云南松样品8个。  相似文献   

2.
α-蒎烯是一种重要的天然产物,可被广泛应用于香料、医药及精细有机合成工业,色谱法是其最常用的分离分析方法。其中,毛细管气相色谱法因其具有高效、快速、高灵敏等优点,在α-蒎烯的分离方法中占主要地位。气相色谱一质谱联用技术可以对产品同时进行定性和定量分析,因此其在天然产品中α-蒎烯的分离及α-蒎烯的合成反应中的应用越来越广泛。  相似文献   

3.
以α-蒎烯及β-蒎烯为原料,采用改进的聚合工艺合成了软化点(环球)136.0℃、加纳色(铁钴)3的α-蒎烯-β-蒎烯共聚物.通过耐候性、储存稳定性考察,用热重分析(TG)、差示扫描量热法(DSC)和Phadnis的方法,研究了聚合物的热稳定性以及热降解动力学,结果表明,α-蒎烯-β-蒎烯共聚物具有较高的耐热稳定性,质量损失1.0%时的温度为260.0℃,降解机理遵循反应级数(n=2)模型,活化能为145.65 kJ/mol,频率因子的自然对数为26.08 s-1.  相似文献   

4.
以FID为检测器、HP-5毛细管为色谱柱,在二阶程序升温363.15 K→5 K/min383.15 K→10 K/min443.15 K、进样口与检测器温度均为523.15 K、高纯氮气为载气、分流比50∶1和进样量0.2μL条件下,对重质松节油主要组分β-石竹烯、双戊烯和α-蒎烯进行气相色谱分析。采用面积校正归一法对样品组成进行定量分析,考察了面积校正归一法的精密度与回收率,比较了面积校正归一法与面积归一法分析结果与样品实际组成的偏差。结果表明:β-石竹烯和α-蒎烯相对于基准物双戊烯的相对质量校正因子分别为1.001 2和0.989 9;β-石竹烯、双戊烯和α-蒎烯的相对标准偏差小于1.09%,加标回收率在99.55%~100.25%;面积校正归一法与面积归一法定量结果最大相对偏差分别为0.57%与1.10%。  相似文献   

5.
采用改进的Ellis平衡釜测定了蒎烷—α—蒎烯、α—蒎烯—长叶烯、蒎烷—长叶烯三个二元及蒎烷—α—蒎烯—长叶烯三元常压汽液平衡数据,实验数据经Herrington规则检验,表明符合热力学一致性。并分别用Wilson和NRTL模型对三个二元体系汽液平衡数据进行了关联,得到了相应的模型参数,同时用二元Wilson参数对所测的三元数据进行了推算,计算结果与实验值的平均偏差为0.0027。  相似文献   

6.
具有微孔-介孔分级结构的MCM-22分子筛被应用于催化α-蒎烯异构化合成莰烯和柠檬烯的反应中,并表现出优异的催化性能.系统考察溶剂、反应温度、反应时间等对α-蒎烯异构化的影响.MCM-22催化α-蒎烯异构化具有效率高的特点,更重要的是其反应-再生循环无需高温处理.循环使用实验表明该催化剂稳定性极好,可多次重复使用.  相似文献   

7.
以强酸性阳离子大孔交换树脂Lewatit2620为催化剂,催化α-蒎烯水合反应,获得主要产物α-松油醇.在催化反应中,部分α-蒎烯发生异构化反应,生成单环萜烯,影响松油醇的收率.在搅拌釜反应器内分别考察了催化剂种类、溶剂种类、催化剂用量、反应物配比、温度及反应时间对α-蒎烯转化率和α-松油醇收率的影响.结果表明,优化反应条件为:催化剂用量为每克总液体炉料使用催化剂0.20g,m(α-蒎烯)∶m(水)∶m(溶剂y)=1∶0.13∶2,反应温度333.15K,反应时间4h,此时α-蒎烯转化率为98%,松油醇的收率为36%.本文建立拟均相(PH)模型来研究α-蒎烯直接水合反应的动力学,并估算出动力学参数,通过模型得到的计算值与实验值是吻合的,故PH模型适用于α-蒎烯的直接水合反应.用准一级动力学模型确定了各反应的反应速率常数的表达式.  相似文献   

8.
α-蒎烯加氢反应制蒎烷的工艺研究   总被引:3,自引:0,他引:3  
对蒎烷合成过程所用的Raney镍催化剂的制备工艺条件进行了优化 ,考察了Raney镍催化α—蒎烯加氢制蒎烷过程中反应条件对顺式蒎烷选择性的影响 .进行了工业化试生产 ,当加氢压力为 0 .5 - 0 .8MPa ,温度为 10 0 - 140℃时 ,反应 5h ,蒎烷总得率 98%以上 ,顺式蒎烷选择性大于 95 %.  相似文献   

9.
α-蒎烯催化环氧化的研究进展   总被引:3,自引:0,他引:3  
2,3-环氧蒎烷是一类重要的精细化工和医药中间体,一般通过α-蒎烯的环氧化反应进行制备.为了满足工业化的生产,人们对该反应进行了大量的研究,本文简要地回顾了近年来国内外对α-蒎烯催化环氧化反应的研究进展.  相似文献   

10.
<正> 在林产化学工业,如合成樟脑和一些香料的生产中,需要某些萜烯类物质二元体系的汽液相平衡数据及关联式。关于这方面的工作,国内尚未见报道,国外也仅有少数文献报道,而且不免有粗糙之处(例如文献[4]中所报道的α-蒎烯~苧烯二元系汽液平衡数据)。作者正在对常见的萜烯类物质进行汽液平衡数据的测定,并用Wilson方程关联。本文首先介绍作者应用改进的Rose平衡釜(以下简称Rose釜)测得的在111mmHg(绝压)下α-蒎烯~苧烯二元体系的汽液平衡数据。  相似文献   

11.
笔者以α-蒎烯为原料高选择性环氧化合成2,3-环氧蒎烷。探讨了过氧乙酸浓度及用量、碳酸钠用量、溶剂类型、反应温度及反应时间等对α-蒎烯转化率、2,3-环氧蒎烷选择性及产物组成的影响;确定了适宜的环氧化反应条件:反应温度为0~10℃;过氧乙酸浓度2.0 mol/L,α-蒎烯与过氧乙酸物质量之比为1∶1.1;α-蒎烯与碳酸钠物质量之比为1∶1.2;反应时间2 h;以氯仿为溶剂,溶剂用量为α-蒎烯与氯仿体积比1∶1.7。在此条件下α-蒎烯转化率为99%以上,2,3-环氧蒎烷的选择性大于95%,反应产物中主要杂质α-龙脑烯醛和3-蒎酮的含量仅为3.3%和1.2%左右。  相似文献   

12.
采用浸渍法制备二氧化硅负载磷钨酸催化剂,催化β-蒎烯阳离子聚合合成β-萜烯树脂.运用红外光谱、X射线衍射、透射电镜、比表面积和孔径测定、核磁共振氢谱和凝胶渗透色谱等测试技术对催化剂和聚合产物的结构进行了表征.考察了磷钨酸的负载量、催化剂用量、反应温度、反应时间、原料浓度等因素对产物收率的影响,确定了最佳反应条件:催化剂负载量为60%,用量为0.6g,反应温度为-20℃,反应时间为1h,β-蒎烯的用量为3 ml,1,2-二氯乙烷用量溶剂为7ml时,β-蒎烯树脂收率可达84.8%,数均分子量在1200左右,分子量分布指数为1.72.  相似文献   

13.
α-蒎烯快速均相催化异构化研究   总被引:1,自引:0,他引:1  
以磷钼酸为催化剂,α-蒎烯或松节油可在较低的温度下快速异构化为α-松油烯、柠檬烯、γ-松油烯、异松油烯.反应介质的极性对磷钼酸催化下的α-蒎烯异构化的反应活性和主产物选择性影响显著.在中等极性溶剂四氢呋喃中,研究了催化剂用量、反应温度、反应时间等因素对α-蒎烯均相异构反应的影响,得出了较合适的反应条件.  相似文献   

14.
用分子蒸馏方法分离莪术油中β-榄香烯,研究了温度、压力、刮膜器转速以及进料速度对β-榄香烯纯度和收率的影响.实验结果表明:在温度60℃,压力50Pa,刮膜器转速220r/min,进料流速2.0mL/min的条件下,分离效果最佳.经过2次分离,β-榄香烯纯度可达到25.3%.  相似文献   

15.
芳烃络合物引发α-蒎烯正离子聚合的研究   总被引:1,自引:0,他引:1  
本文第一次把芳烃络合物作为引发剂用于α-蒎烯的阳离子聚合。与路易斯酸比较,芳烃络合物对α-蒎烯阳离子聚合反应是一种更有效的引发剂。研究了引发剂浓度、单体浓度和溶剂的性质对聚台产率、产物的分子量和分子量分布的影响。  相似文献   

16.
研究了微波辐射下α 蒎烯与甲酸的加成反应。结果表明,加成反应较好的工艺条件为:α 蒎烯0.03mol,甲酸0.15mol,硫酸催化剂用量7.14×10-4mol,微波功率700W,反应时间40min。在此工艺条件下,主产物甲酸松油酯的得率为60.4%,选择性为64.5%。微波辐射技术应用于甲酸松油酯的合成,在低温条件下反应速率和选择性的提高并不明显,其作用机理还有待进一步探讨。  相似文献   

17.
以新合成的1-甲氧羰基-乙基-苄基二硫代乙酯(MEPD)作为RAFT试剂,在70℃下进行了β-蒎烯与丙烯酸甲酯的RAFT自由基共聚合研究。结果表明,在较低β-蒎烯投料比下(fβ-pinene=0.1),该共聚反应显示一级动力学特征,产物相对分子质量随单体总转化率增加而增加,相对分子质量分布较窄,表现出活性/可控聚合特征。但在较高β-蒎烯投料配比(fβ-pinene=0.2或0.3)的共聚体系中,随着单体转化率增加产物相对分子质量出现不增反降的反常现象,而且单体投料中β-蒎烯含量越高,该行为越明显。该文对该现象提出了相应的降解(链断裂)机理,1HNMR分析结果支持了该机理。  相似文献   

18.
合成α-蒎烯-马来酸酐加成物的新工艺研究   总被引:1,自引:2,他引:1  
在DLB催化下,α-蒎烯经异构同时和马来酸酐发生D ie ls-A lder反应合成1-异丙基-4-甲基二环[2.2.2]-5-辛烯-2,3-二酸酐(TM A)。首次运用正交设计法研究了合成TM A的主要影响因素,TM A的收率达88.2%,纯度达92.7%,并明显缩短了反应时间。利用IR、TLC、GC、GC-M S-DS等手段对TM A进行了分析和表征。  相似文献   

19.
M-ZSM-5催化α-蒎烯空气环氧化反应   总被引:2,自引:0,他引:2  
采用不同的金属离子交换Na-ZSM-5型分子筛制备M-ZSM-5催化剂.以空气作为氧化剂,N,N-二甲基甲酰胺(DMF)作为溶剂,用M-ZSM-5催化环氧化α-蒎烯.采用XRD和IR对催化剂进行表征,结果表明ZSM-5经过离子交换后其基本骨架结构没有发生变化.结果表明Co-ZSM-5的催化活性最高,以1.2%Co-ZSM-5型分子筛为催化剂,空气作为氧化剂并用少量的TBHP作为引发剂,采用DMF作为溶剂,在90℃下反应5 h,α-蒎烯的转化率达84.5%,α-蒎烯环氧化物选择性达78.1%.催化剂经过回收利用,发现催化效果基本保持一致.  相似文献   

20.
α-蒎烯作为重要化工原料被广泛应用于医药和香料行业,为了解α-蒎烯在较低温度下氧气氧化过程性质,采用小型密闭压力容器试验(MCPVT)装置跟踪测定α-蒎烯与氧气氧化的过程压力和温度变化,利用碘量法测定过氧化物浓度,用气相色谱—质谱联用仪(GC-MS)分析了α-蒎烯氧化产物。结果表明,α-蒎烯与氧气的自氧化温度为85℃,氧化过程可分为三个阶段:氧气缓慢吸收阶段、快速氧化反应阶段以及氧化稳定持续阶段。此外,根据升温氧化实验,当α-蒎烯质量为0.87 g,氧气压力为0.5 MPa,温度达116℃时,该反应发生了温度和压力突变现象,具有潜在的失控危险性。α-蒎烯氧化主要发生在双键和烯丙位碳氢键上,二级碳氢烯丙基产物选择性明显高于一级碳氢烯丙基产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号