首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
广义四元数群的全自同构群   总被引:3,自引:1,他引:3  
一个有限群Q4n称为广义四元群,若Q4n=〈a,b|a2n=1,b2=an,ab=a-1〉,n≥3.根据广义四元群Q4n的结构和性质,利用群的扩张理论,先确定了Q4p与Q4pm的全自同构群的结构,由此归纳出一般的广义四元群Q4n的全自同构群的结构如下:设p1为n的最小素因子,n=pr11 pr22…prkk为n的素数分解,那么(a)当p1>2时,Aut(G)=〈α〉:(〈η1〉×〈η2〉×…×〈ηk〉);(b)当p1=2时,Aut(G)=〈α〉:(〈η2〉×…×〈ηk〉), r1=1〈α〉:(〈γ〉×〈η2〉×…×〈ηk〉), r1=2〈α〉:(〈μ〉×〈ν〉×〈η2〉×…×〈ηk〉), r1≥3.  相似文献   

2.
完整解决了广义四元数群Q4pm(p为奇素数, m为正整数)的连通4度及5度无向Cayley图的CI性、正规性和弧传递性. (1)关于CI性, 证明广义四元数群Q4pm都是弱5-CI的;(2)关于正规性和弧传递性, 证明广义四元数群Q4pm的连通4度Cayley图在同构意义下只有两类图, 其中一类正规不弧传递, 另一类不正规但弧传递; 而广义四元数群Q4pm的连通5度Cayley图在同构意义下也只有两类图, 其中一类正规, 另一类不正规, 而且两类图都非弧传递.  相似文献   

3.
设G是一个群,用ΓZ(G)表示G的中心图.定义ΓZ(G)的顶点集为群G的元素满足:对G中任意两个不同的元素a,b,若ab∈Z(G),则a,b相连,其中Z(G)为G的中心.主要研究二面体群D2n和广义四元数群Q4n的中心图,完整地得到了这两类群的中心图.  相似文献   

4.
设 Q =4l +1 ,l是非负整数 ,a、b是奇偶性相同的整数 ,则对于任意的非负整数 n,     f ( n) =1Qa +b Q2n+1-a -b Q2n+1     ( * )都表示整数。特别 ,当 a、b是自然数时 ,f ( n)也是自然数 ;当 a、b是偶数时 ,f ( n)也是偶数。( * )式就是一个用无理数幂表示整数的公式。证 :当 n =0时 ,f ( 0 ) =b,命题成立 ;假设对一切小于 k的自然数 n命题均成立 ,则f ( k) =1Qa +b Q2k+1-a -b Q2k+1=1Qa +b Q2k a +b Q2 -a -b Q2k a -b Q2=1Qa +b Q2k -a -b Q2k a +b Q2 +a -b Q2  -1Qa +b Q2k a -b Q2 -a -b Q2k a +b Q2=af ( k -1 ) …  相似文献   

5.
本文给出了广义Fibonacci数列(G0=a,G1=b,Gn+2=pGn+1+q Gn,n≥0,其中a,b,p,q为任意实数)通项公式的充要条件,并由通项公式出发,着重讨论了p2+4q=0时的各种情况。  相似文献   

6.
设a,b,D,k是适合gad(a,b)=gcd(D,k)=1,a2-Db2=k的正整数;又设α=a+b D,β=a-bD.本文证明了当D是非平方数且k含有适合p≡±3(mod8)的素因数p时,方程α2n+β2n=2x2没有正整数解(x,n).  相似文献   

7.
令a,b为任意固定正常数,并记δ=δ(a,b)=a+b/(a+b).考虑广义Fibonacci序列F{n}为:Fn=aF_(n-1)+bF_(n-2),n≥2,F0=F1=1.一个熟知的基本事实是:比值序列{F_n/F_(n+1)}收敛,且其极限g(a,b)恰为关于a,b的广义黄金分割数.在附加条件bδ2的情况下,给出这个基本结论的一个新的、内蕴的证明.同时,由此也得到广义黄金分割数g(a,b)的连分数表达.  相似文献   

8.
证明了a=4时,Gvozdjak猜想成立.即路Pn存在一个(a,b;n)-优美标号,当且仅当整数a,b,n满足:(1)b-a与n(n+1)/2有相同的奇偶性;(2)0<|b-a|≤(n+1)/2;(3)n/2≤a+b≤3n/2.在a=4时,成立.  相似文献   

9.
设k≥ 2 ,Hk 表示一个正整数n的集合 ,使对任意的正整数q ,同余方程a +bk≡n(modq)在模q的既约剩余系中有解a ,b .Ek(x)表示n≤x ,n∈Hk,但不能表成p1+p2 k=n的数的个数 ,则在GRH下有Ek(x) x1-2h(k)4 k- 1 +ε,这里h( 2 ) =316 ;k>2 ,h(k) =4k-12× ( 3× 4k -2 +1)k.  相似文献   

10.
ERDO S等于1987年曾证明了:对于正整数a,b,如果对所有素数p,a,b被p除所得余数分别为a(m od p),b(m od p),都有a(m od p)≤b(m od p),则a=b.该文则研究对哪些正整数a,b,满足对所有素数p,恒有a(m od p)≤b(m od p) 1,对1≤a≤5,确定了所有的b.即当a=1时,b可取一切正整数;a=2时,b=2k,k=0,1,2,…;a=3时,b=2,3,4,9;a=4时,b=3,4;a=5时,b=4,5.  相似文献   

11.
设Q表示四元数集合,Mn(Q)表示n×n四元数矩阵的集合.若M、N∈Mn(Q)分别是下三角可逆四元数矩阵且φ(A)=MAN,证明了对于任意下三角四元数矩阵A∈Mn(Q),如果φ(A)与A具有相同的左特征值,当且仅当M、N和A中的元素mss,nss和ass的虚部对应成比例,且mssnss=1,或虚部对应为零.  相似文献   

12.
得到非正规子群都是q群的完全分类,即证明了如下结论:设q是一个素数,有限群C不是Dedekind群,则G的非正规子群都是q群的充要条件是G为非交换q群且不同构于Q8×E,其中Q8是8阶四元数群,E为初等阿贝尔2-群,或G=PQ,其中P为G的P阶正规子群,Q为G的非正规q群,Q为Dedekind群且p=1(mod q).  相似文献   

13.
给出了具临界指数的Baouendi-Grushin方程Pu=-uQQ+-22的显式解为u=c[(2|z|2)2+4|t|2]-Q4-2,其中P=Δz+|z|2Δt为α=1时的广义Baouendi-Grushin算子,z∈Rn,t∈Rm,Q=n+2m为齐次维数,c=[(Q-2)n2]Q4-2,>0.本文还由此导出算子P的精确Sobolev不等式中的嵌入常数为S=2Qmπ-2(nn++2mm){n[n+2(m-1)]}21×Γ(n+m)Γ(n+2m)1n+2m,极值函数为[(1+|z|2)2+4|t|2]-41.当n=m=1时,本文的结论与Beckner[4]的结果一致.  相似文献   

14.
本文讨论四元数(有单位元1,i,j,k,i2=j2=k2=-1,ij=k=-ji)正则函数与正则调和函数的关系,首先证明了数量调和函数的共轭矢量调和函数的存在性及矢量调和函数存在共轭数量调和函数的充要条件;其次证明了广义多圆柱区域上正则函数的Dirichlet边值问题的可解性并给出了通解表达式;最后讨论了一个非齐次方程 U=AU+B +C的Dirichlet边值问题的可解性。  相似文献   

15.
一类四元数体上线性矩阵方程组的解   总被引:1,自引:1,他引:0  
利用四元数矩阵的广义逆给出了在四元数体上由4个线性方程A1X=C1,A2X=C2,A3XB3=C3,A4XB4=C4,构成的方程组有解的充分必要条件和一般解的表达式.  相似文献   

16.
棱柱图n是由2个回路v1,v2,v3,…,v n和u1,u2,u3,…,un,加上边uivi后所组成的图形.图∪ni=14是n个4的不交并图,图∪n i=18是n个8的不交并图,证明了2类非连通图∪n i=14和∪n i=18是优美图且是交错图.  相似文献   

17.
称有限群G的Cayley(有向)图X是正规的,如果G的右正则表示R(G)正规于图X的全自同构群Aut(X).该文主要研究8p阶二面体群G∶=D8p=〈a,b a4p=b2=1,b-1ab=a-1〉的连通3度Cayley有向图X∶=Cay(G,S)的正规性.并证明:(1)若p=2时,Cayley(有向)图X不正规当且仅当S~{b,a,a5}和S~{b,ba,bak}(k=3,4,5,6).(2)若p为奇素数,Cayley(有向)图X不正规当且仅当S~{b,a,a2p+1}和S~{b,ba,bak}(k=2p,2p+1).  相似文献   

18.
卢世芳 《青海大学学报》2009,27(4):42-44,52
对于一个简单图G,称矩阵Q(G)=D(G)+A(G)是图G的Signless Laplacian矩阵,多项式QG(λ)=det(λI—Q)是图G的特征多项式。本文给出了在完全二部图K2,a-2上两种不同的加边方式所得图类和在C3的一个顶点上悬挂P=n-3条边所得图类的Signless Laplacian矩阵特征多项式。  相似文献   

19.
本文研究了广义Bezier曲线Qn(f;x)关于f(x)的收敛性,及Q(l)n(f;x)关于f(1)(x)的收敛性,证明了相应的收敛定理  相似文献   

20.
对4m阶拟二面体群G=〈a,b|a2m=b2=1,ab=am+1〉和4阶半二面体群G=〈a,b|a2m=b2=1,ab=am-1〉且m=2r,r〉2的3度Cayley图作比图。得到两者均有一个图是正规Cayley图且同构,且A1≌Z2的结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号