首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Menkes disease (MD) is an X-linked recessive disorder characterized by copper deficiency resulting in a diminished function of copper-dependent enzymes. Most MD patients die in early childhood, although mild forms of MD have also been described. A diversity of mutations in the gene encoding of the Golgi-resident copper-transporting P1B-type ATPase ATP7A underlies MD. To elucidate the molecular consequences of the ATP7A mutations, various mutations in ATP7A associated with distinct phenotypes of MD (L873R, C1000R, N1304S, and A1362D) were analyzed in detail. All mutants studied displayed changes in protein expression and intracellular localization parallel to a dramatic decline in their copper-transporting capacity compared to ATP7A the wild-type. We restored these observed defects in ATP7A mutant proteins by culturing the cells at 30°C, which improves the quality of protein folding, similar to that which as has recently has been demonstrated for misfolded ATP7B, a copper transporter homologous to ATP7A. Further, the effect of the canine copper toxicosis protein COMMD1 on ATP7A function was examined as COMMD1 has been shown to regulate the proteolysis of ATP7B proteins. Interestingly, in addition to adjusted growth temperature, binding of COMMD1 partially restored the expression, subcellular localization, and copper-exporting activities of the ATP7A mutants. However, no effect of pharmacological chaperones was observed. Together, the presented data might provide a new direction for developing therapies to improve the residual exporting activity of unstable ATP7A mutant proteins, and suggests a potential role for COMMD1 in this process.  相似文献   

2.
The polypeptide composition of the U7 small nuclear ribonucleoprotein (snRNP) involved in histone messenger RNA (mRNA) 3' end formation has recently been elucidated. In contrast to spliceosomal snRNPs, which contain a ring-shaped assembly of seven so-called Sm proteins, in the U7 snRNP the Sm proteins D1 and D2 are replaced by U7-specific Sm-like proteins, Lsm10 and Lsm11. This polypeptide composition and the unusual structure of Lsm11, which plays a role in histone RNA processing, represent new themes in the biology of Sm/Lsm proteins. Moreover this structure has important consequences for snRNP assembly that is mediated by two complexes containing the PRMT5 methyltransferase and the SMN (survival of motor neurons) protein, respectively. Finally, the ability to alter this polypeptide composition by a small mutation in U7 snRNA forms the basis for using modified U7 snRNA derivatives to alter specific pre-mRNA splicing events, thereby opening up a new way for antisense gene therapy.  相似文献   

3.
Neuronal ceroid lipofuscinoses (NCL) are caused by mutations in eight different genes, are characterized by lysosomal accumulation of autofluorescent storage material, and result in a disease that causes degeneration of the central nervous system (CNS). Although functions are defined for some of the soluble proteins that are defective in NCL (cathepsin D, PPT1, and TPP1), the primary function of the other proteins defective in NCLs (CLN3, CLN5, CLN6, CLN7, and CLN8) remain poorly defined. Understanding the localization and network of interactions for these proteins can offer clues as to the function of the NCL proteins and also the pathways that will be disrupted in their absence. Here, we present a review of the current understanding of the localization, interactions, and function of the proteins associated with NCL.  相似文献   

4.
O-GlcNAcylation of proteins is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). The homeostasis of O-GlcNAc cycling is regulated during cell cycle progression and is essential for proper cellular division. We previously reported the O-GlcNAcylation of the minichromosome maintenance proteins MCM2, MCM3, MCM6 and MCM7. These proteins belong to the MCM2–7 complex which is crucial for the initiation of DNA replication through its DNA helicase activity. Here we show that the six subunits of MCM2–7 are O-GlcNAcylated and that O-GlcNAcylation of MCM proteins mainly occurs in the chromatin-bound fraction of synchronized human cells. Moreover, we identify stable interaction between OGT and several MCM subunits. We also show that down-regulation of OGT decreases the chromatin binding of MCM2, MCM6 and MCM7 without affecting their steady-state level. Finally, OGT silencing or OGA inhibition destabilizes MCM2/6 and MCM4/7 interactions in the chromatin-enriched fraction. In conclusion, OGT is a new partner of the MCM2–7 complex and O-GlcNAcylation homeostasis might regulate MCM2–7 complex by regulating the chromatin loading of MCM6 and MCM7 and stabilizing MCM/MCM interactions.  相似文献   

5.
Nitrosative and oxidative stress, associated with the generation of excessive reactive oxygen or nitrogen species, are thought to contribute to neurodegenerative disorders. Many such diseases are characterized by conformational changes in proteins that result in their misfolding and aggregation. Accumulating evidence implies that at least two pathways affect protein folding: the ubiquitin-proteasome system (UPS) and molecular chaperones. Normal protein degradation by the UPS can prevent accumulation of aberrantly folded proteins. Molecular chaperones – such as protein-disulfide isomerase, glucose-regulated protein 78, and heat shock proteins – can provide neuroprotection from aberrant proteins by facilitating proper folding and thus preventing their aggregation. Our recent studies have linked nitrosative stress to protein misfolding and neuronal cell death. Here, we present evidence for the hypothesis that nitric oxide contributes to degenerative conditions by S-nitrosylating specific chaperones or UPS proteins that would otherwise prevent accumulation of misfolded proteins. Received 5 December 2006; received after revision 7 February 2007; accepted 15 March 2007  相似文献   

6.
Protecting the terminus: t-loops and telomere end-binding proteins   总被引:11,自引:0,他引:11  
Telomeric DNA is composed of a region of duplex telomeric tract followed by a single-strand overhang on the 3 G-rich strand. The DNA is packaged by proteins that associate directly with the single- and double-strand regions of the telomeric tract and by their associated proteins. This review discusses the evidence that G-strand overhangs are present on both ends of eukaryotic chromosomes and the steps needed to generate these overhangs. The overhangs are protected by specialized G-overhang-binding protein and/or invasion by the overhang of the duplex region of the telomeric tract to form a structure called a t-loop. The G-overhang-binding proteins identified from different species are described, and their properties compared. The data supporting the existence of t-loops at native telomeres is discussed, and the conditions required to promote their in vitro formation are presented.  相似文献   

7.
Copper is an essential but potentially harmful trace element required in many enzymatic processes involving redox chemistry. Cellular copper homeostasis in mammals is predominantly maintained by regulating copper transport through the copper import CTR proteins and the copper exporters ATP7A and ATP7B. Once copper is imported into the cell, several pathways involving a number of copper proteins are responsible for trafficking it specifically where it is required for cellular life, thus avoiding the release of harmful free copper ions. In this study we review recent progress made in understanding the molecular mechanisms of copper transport in cells by analyzing structural features of copper proteins, their mode of interaction, and their thermodynamic and kinetic parameters, thus contributing to systems biology of copper within the cell.  相似文献   

8.
Trimeric guanine nucleotide-binding proteins (G proteins) function as the key regulatory elements in a number of transmembrane signaling cascades where they convey information from agonist-activated receptors to effector molecules. The subcellular localization of G proteins is directly related to their functional role, i.e., the dominant portion of the cellular pool of G proteins resides in the plasma membrane. An intimate association of G protein subunits with the plasma membrane has been well known for a long time. However, results of a number of independent studies published in the past decade have indicated clearly that exposure of intact target cells to agonists results in subcellular redistribution of the cognate G proteins from plasma membranes to the light-vesicular membrane fractions, in internalization from the cell surface into the cell interior and in transfer from the membrane to the soluble cell fraction (high-speed supernatant), i.e., solubilization. Solubilization of G protein α subunits as a consequence of stimulation of G protein-coupled receptors (GPCRs) with agonists has also been observed in isolated membrane preparations. The membrane-cytosol shift of G proteins was detected even after direct activation of these proteins by non-hydrolyzable analogues of GTP or by cholera toxin-induced ADP-ribosylation. In addition, prolonged stimulation of GPCRs with agonists has been shown to lead to down-regulation of the relevant G proteins. Together, these data suggest that G proteins might potentially participate in a highly complex set of events, which are generally termed desensitization of the hormone response. Internalization, subcellular redistribution, solubilization, and down-regulation of trimeric G proteins may thus provide an additional means (i.e., beside receptor-based mechanisms) to dampen the hormone or neurotransmitter response after sustained (long-term) exposure. Received 31 August 2001; received after revision 31 October 2001; accepted 7 November 2001  相似文献   

9.
G1 phase cell cycle proteins, such as cyclin-dependent kinase 6 (Cdk6) and its activating partners, the D-type cyclins, are important regulators of T-cell development and function. An F-box protein, called F-box only protein 7 (Fbxo7), acts as a cell cycle regulator by enhancing cyclin D-Cdk6 complex formation and stabilising levels of p27, a cyclin-dependent kinase inhibitor. We generated a murine model of reduced Fbxo7 expression to test its physiological role in multiple tissues and found that these mice displayed a pronounced thymic hypoplasia. Further analysis revealed that Fbxo7 differentially affected proliferation and apoptosis of thymocytes at various stages of differentiation in the thymus and also mature T-cell function and proliferation in the periphery. Paradoxically, Fbxo7-deficient immature thymocytes failed to undergo expansion in the thymus due to a lack of Cdk6 activity, while mature T cells showed enhanced proliferative capacity upon T-cell receptor engagement due to reduced p27 levels. Our studies reveal differential cell cycle regulation by Fbxo7 at different stages in T-cell development.  相似文献   

10.
Noncollagenous, nonproteoglycan macromolecules of cartilage   总被引:4,自引:0,他引:4  
Extracellular matrix comprises approximately 90% of cartilage, with collagens and proteoglycans making up the bulk of the tissue. In recent years, several abundant cartilage proteins that are neither collagens nor proteoglycans have been characterized in detail. The putative roles of these proteins range from involvement in matrix organization or matrix-cell signaling (PRELP, chondroadherin, cartilage oligomeric protein and cartilage matrix protein) through to molecules that are likely to be involved with modulation of the chondrocyte phenotype (CD-RAP, CDMPs, chondromodulin and pleiotrophin). Other molecules, such as the cartilage-derived C-type lectin and cartilage intermediate layer protein have no role as yet. Due to the difficulties associated with experimentally manipulating a tissue that is 90% extracellular matrix in a manner that can be readily transferred to the whole organism, many of these molecules have been focused on by a surprisingly small number of researchers. This review focuses on newly discovered proteins and glycoproteins in cartilage, with a bias towards those that have structural roles or that are unique to cartilage. Received 7 January 1999; accepted 11 March 1999  相似文献   

11.
Autophagic degradation of cytoplasm (including protein, RNA etc.) is a non-selective bulk process, as indicated by ultrastructural evidence and by the similarity in autophagic sequestration rates of various cytosolic enzymes with different half-lives. The initial autophagic sequestration step, performed by a poorly-characterized organelle called a phagophore, is subject tofeedback inhibition by purines and amino acids, the effect of the latter being potentiated by insulin and antagonized by glucagon. Epinephrine and other adrenergic agonists inhibit autophagic sequestration through a prazosin-sensitive 1-adrenergic mechanism. The sequestration is also inhibited by cAMP and by protein phosphorylation as indicated by the effects of cyclic nucleotide analogues, phosphodiesterase inhibitors and okadaic acid.Asparagine specifically inhibits autophagic-lysosomal fusion without having any significant effects on autophagic sequestration, on intralysosomal degradation or on the endocytic pathway. Autophaged material that accumulates in prelysosomal vacuoles in the presence of asparagine is accessible to endocytosed enzymes, revealing the existence of an amphifunctional organelle, the amphisome. Evidence from several cell types suggests that endocytosis may be coupled to autophagy to a variable extent, and that the amphisome may play a central role as a collecting station for material destined for lysosomal degradation.Protein degradation can also take place in a salvage compartment closely associated with the endoplasmic reticulum (ER). In this compartment unassembled protein chains are degraded by uncharacterized proteinases, while resident proteins roturn to the ER and assembled secretory and membrane proteins proceed through the Golgi apparatus. In thetrans-Golgi network some proteins are proteolytically processed by Ca2+-dependent proteinases; furthermore, this compartment sorts proteins to lysosomes, various membrane domains, endosomes or secretory vesicles/granules. Processing of both endogenous and exogenous proteins can occurr in endosomes, which may play a particularly important role in antigen processing and presentation. Proteins in endosomes or secretory compartments can either be exocytosed, or channeled to lysosomes for degradation. The switch mechanisms which decide between these options are subject to bioregulation by external agents (hormones and growth factors), and may play an important role in the control of protein uptake and secretion.  相似文献   

12.
13.
DnaJ/Hsp40 (heat shock protein 40) proteins have been preserved throughout evolution and are important for protein translation, folding, unfolding, translocation, and degradation, primarily by stimulating the ATPase activity of chaperone proteins, Hsp70s. Because the ATP hydrolysis is essential for the activity of Hsp70s, DnaJ/Hsp40 proteins actually determine the activity of Hsp70s by stabilizing their interaction with substrate proteins. DnaJ/Hsp40 proteins all contain the J domain through which they bind to Hsp70s and can be categorized into three groups, depending on the presence of other domains. Six DnaJ homologs have been identified in Escherichia coli and 22 in Saccharomyces cerevisiae. Genome-wide analysis has revealed 41 DnaJ/Hsp40 family members (or putative members) in humans. While 34 contain the typical J domains, 7 bear partially conserved J-like domains, but are still suggested to function as DnaJ/ Hsp40 proteins. DnaJA2b, DnaJB1b, DnaJC2, DnaJC20, and DnaJC21 are named for the first time in this review; all other human DnaJ proteins were dubbed according to their gene names, e.g. DnaJA1 is the human protein named after its gene DNAJA1. This review highlights the progress in studying the domains in DnaJ/Hsp40 proteins, introduces the mechanisms by which they interact with Hsp70s, and stresses their functional diversity. Received 27 April 2006; received after revision 5 June 2006; accepted 19 July 2006  相似文献   

14.
Microtubule transport defects in neurological and ciliary disease   总被引:1,自引:0,他引:1  
Microtubules are primarily responsible for facilitating long-distance transport of both proteins and organelles. Given the critical role of this process in cellular function, it is not surprising that perturbation of microtubule-based transport can lead to diverse phenotypes in humans, including cancer and neurodegenerative disorders such as Alzheimer or Huntington disease. Recent investigations have also indicated that defects in specialized microtubule-based transport systems, such as mutations affecting the transport of protein particles along the length of cilia (intraflagellar transport) can cause retinal dystrophy, polycystic kidney disease or more complex syndromic phenotypes, such as Bardet-Biedl syndrome. In this review, we discuss recent findings implicating defects in microtubule-associated transport and motor proteins in a variety of diseases, particularly the role of defective microtubular transport in neurological and ciliary disease. These defects frequently display phenotypic consequences that manifest as human disease yet do not cause organismal lethality.Received 7 Janury 2005; received after revision 23 February 2005; accepted 21 March 2005  相似文献   

15.
The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used.  相似文献   

16.
Sera of healthy students (from Academy of Paris) aged between 18 and 30 years were collected with a view to routine clinical testing. 50 samples each representing the pooled sera of 400 individuals were investigated by evaluating 7 proteins for each pooled sample. Calculations of standard deviations showed that there existed a significant reproductibility of less than 2% for the population as a whole. These pooled sera representing 20 000 individual blood samples are proposed as a standard of human serum proteins.  相似文献   

17.
The finding that mitochondria contain substrates for protein kinases lead to the discovery that protein kinases are located in the mitochondria of certain tissues and species. These include pyruvate dyhydrogenase kinase, branched-chain α-ketoacid dehydrogenase kinase, protein kinase A, protein kinase Cδ, stress-activated kinase and A-Raf as well as unidentified kinases. Recent evidence suggests that mitochondrial protein kinases may be involved in physiological processes such as apoptosis and steroidogenesis. Additionally, the novel finding of low-molecular-weight GTP-binding proteins in mitochondria suggests the possibility that these may interact with mitochondrial protein kinases to regulate the activity of mitochondrial effector proteins. The fact that there are components of cellular regulatory systems in mitochondria indicates the exciting possibility of undiscovered systems regulating mitochondrial physiology. Received 19 June 2001; received after revision 7 August 2001; accepted 8 August 2001  相似文献   

18.
The isolation of extracellular vesicles (EVs) from blood is of great importance to understand the biological role of circulating EVs and to develop EVs as biomarkers of disease. Due to the concurrent presence of lipoprotein particles, however, blood is one of the most difficult body fluids to isolate EVs from. The aim of this study was to develop a robust method to isolate and characterise EVs from blood with minimal contamination by plasma proteins and lipoprotein particles. Plasma and serum were collected from healthy subjects, and EVs were isolated by size-exclusion chromatography (SEC), with most particles being present in fractions 8–12, while the bulk of the plasma proteins was present in fractions 11–28. Vesicle markers peaked in fractions 7–11; however, the same fractions also contained lipoprotein particles. The purity of EVs was improved by combining a density cushion with SEC to further separate lipoprotein particles from the vesicles, which reduced the contamination of lipoprotein particles by 100-fold. Using this novel isolation procedure, a total of 1187 proteins were identified in plasma EVs by mass spectrometry, of which several proteins are known as EV-associated proteins but have hitherto not been identified in the previous proteomic studies of plasma EVs. This study shows that SEC alone is unable to completely separate plasma EVs from lipoprotein particles. However, combining SEC with a density cushion significantly improved the separation of EVs from lipoproteins and allowed for a detailed analysis of the proteome of plasma EVs, thus making blood a viable source for EV biomarker discovery.  相似文献   

19.
Production of pharmaceutical proteins in milk   总被引:1,自引:0,他引:1  
There is every reason to expect that it will be possible within the next few years to begin to use farm animals to produce large quantities of some of the human proteins that are needed for the treatment of disease. Revolutionary new opportunities for the production of novel proteins in milk have been created by the development of methods for gene transfer. Exploitation of these opportunities depends upon selection and cloning of milk protein genes and identification of the sequences that govern tissue specific hormonally induced expression in the mammary gland. Studies with three genes, ovine -lactoglobulin, rat -casein and whey acidic protein of rat and mouse, suggest that they may all meet this requirement. Fragments of the ovine -lactoglobulin, murine whey acidic protein and rabbit -casein genes have directed production of novel proteins in the milk of transgenic mice, sheep, rabbits and pigs. The proteins were biologically active and usually co-migrated with authentic proteins. In early experiments, protein concentration was low, but our recent observations suggest that fusion genes containing genomic clones direct production of concentrations of protein that are suitable for commercial exploitation. In the longer term, two approaches may offer the potential of more reliable expression. Control elements capable of directing expression that is independent of site of insertion of the gene, but dependent on the number of copies of the gene, have been identified for a small number of genes. The availability of such elements for the milk protein genes would increase the reliability of gene expression considerably. Alternatively, targeted mutation of genes may allow the insertion of coding sequences within an existing gene so avoiding position effects.  相似文献   

20.
Summary In biotin-deficient rats, a decrease of total proteins, attributable to a decrease of albumin anda 1-globulin fractions, a decrease of the pre--lipoproteins and an increase of the -lipoproteins, was observed, together with a rise of total amino acids. Such a situation may be related to the influence of biotin on the synthesis of RNA and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号