首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 68 毫秒
1.
微波辐射Fenton试剂-活性炭催化氧化体系降解水中苯酚   总被引:8,自引:0,他引:8  
以1.0g苯酚溶于1000InL无酚水中作为模拟水样组成反应模型,利用微波辐射以Fenton试剂与活性炭组成的催化氧化体系来降解水中苯酚,并研究了各种因素对微波辐射该体系催化氧化降解苯酚反应的影响.研究表明,微波辐射.Fenton试剂一活性炭催化氧化体系能高效快速降解水中苯酚,较彻底地矿化水中有机物,使处理后的模拟水有机物含量达到饮用水的标准.其优化条件为:微波输出功率650w,微波辐射时间为15min,活性炭用量1.0g,Fenton试剂H2O2与FeSO4,7H2O物质量比为50:1。  相似文献   

2.
采用UV—Fenton法降解苯酚溶液,研究其对苯酚光催化降解过程的影响因素。考察了光照时间、苯酚初始浓度、H2O2和Fe^2+用量、溶液pH值等对苯酚光催化降解的影响。结果表明,常温下苯酚初始浓度为300mg·L^-1时,在光照时间为10min,H2O2浓度为20mmol·L^-1,Fe^2+浓度为3.6mmol·L^-1,pH值为4时,苯酚降解率可达98.37%。  相似文献   

3.
超声-Fenton试剂耦合降解水中苯酚的研究   总被引:8,自引:0,他引:8  
采用超声-Fenton试剂耦合法降解水中的苯酚.单因素考察了反应时间、超声功率、Fenton试剂中H2O2和Fe^2+的浓度配比、初始pH值以及反应温度对苯酚降解率的影响;采用正交实验法,得到各因素影响显著性的先后顺序为:Fenton试剂中H2O2与Fe^2+的浓度配比、超声功率、反应时间、初始pH值;优化了降解反应的工艺条件:常压、30℃时,在超声频率为40kHz、超声功率为400W、H2O2和Fe^2+的浓度分别为60mmol/L和1.2mmol/L、反应时间为10min、初始pH值为3的最佳条件下处理100mg/L的苯酚溶液,其降解率可达99.5%,在最佳工艺条件下对超声-Fenton降解苯酚的动力学研究发现:反应符合表观一级反应动力学,研究表明:超声-Fenton试剂耦合法明显优于二者的简单叠加,能够显著地缩短反应时间,提高苯酚的降解率。  相似文献   

4.
将微波辐射应用于污泥脱水,研究污泥在不同微波辐射强度和辐射时间后污泥比阻、泥饼含水率和溶解性化学需氧量的变化,探讨微波辐射对污泥结构破坏的相关机理.结果表明,微波辐射可明显改善污泥脱水性能,微波辐射能越高,最佳微波辐射时间越短,低强度短时间的微波辐射难以改变污泥性质.微波联合Fenton试剂能提高污泥脱水性能,先微波后投加Fenton试剂比先投加Fenton试剂后微波效果更好.  相似文献   

5.
活化凹凸棒石联合Fenton试剂处理水中苯酚   总被引:1,自引:1,他引:0  
采用Fenton试剂联合活化凹凸棒石处理模拟微污染水中苯酚。在Fenton试剂氧化处理的最佳条件下对活化凹凸棒石吸附苯酚的最佳条件进行了研究,考察了pH值、吸附时间、投加量等因素对苯酚去除效果的影响.结果表明:使用Fenton试剂氧化处理后再用活化凹凸棒石对微污染水中苯酚具有较好的去除效果,在苯酚浓度为10mg/L、pH8、温度为25℃、投加量为8g/L、吸附时间30min的条件下,苯酚去除率达94.40%;  相似文献   

6.
模拟太阳光条件下草酸钠-Fenton试剂降解苯酚   总被引:3,自引:0,他引:3  
采用氙灯模拟自然条件下的太阳光, 研究了苯酚在草酸钠 Fenton反应体系作用下 的降解规律. 对光源、 H2O2、C2O2-4、Fe2+的初始浓度以及pH 值对苯酚的去除率的影响进行了探讨. 结果表明, C2O2-4能有效强化Fenton试剂对苯酚的作用, 在初始pH值为4、 过氧化氢浓度为0.735 1 mmol/L、 草酸钠浓度为0.074 63 mmol/L、 亚铁离子浓度为0.053 6 mmol/L时, 溶液中0.595 2 mmol/L苯酚在90 min的降解率可达76.5%, 其降解过程符合一级动力学方程. GC MS分析表明, 苯酚降解的中间产物主要为苯醌和有机酸.  相似文献   

7.
电化学法生成Fenton试剂处理苯酚模拟废水的试验研究   总被引:4,自引:0,他引:4  
用电解法对苯酚废水进行了处理.以活性炭纤维为阴极,铁为阳极,并向阴极不断通入空气,电解过程中生成的H2O2与阳极溶解的Fe2 形成Fenton试剂,Fenton试剂在电解的过程中可以产生大量活性羟基OH,能够很好地氧化降解废水中的苯酚.在最佳试验条件下,苯酚的去除率能够达到90%以上,取得了很好的去除效果,并且有效地降低了Fenton试剂的成本.  相似文献   

8.
分别用Fenton试剂法和EF-Feox法氧化处理苯酚模拟废水,研究结果显示:Fenton试剂法中,H2O2投加量为10mL/L,Fe^2+为4mmol/L,pH为4.1,经过30min后,COD去除率达75.7%,而在EF-Feox法中,在外加电压7V,H2O2投加量为5.6mL/L,Na2SO4投加量0.7g/L,pH为3.1,经过30min后,COD去除率达83.3%.两者比较,EF-Feox法比Fenton试剂法的去除率效果提高了近8%。  相似文献   

9.
试验采用催化氧化法对苯酚废水进行处理。通过设计正交试验考查活性组分种类、负载量、浸渍时间和焙烧温度对处理效果的影响,并在最优条件下对催化剂寿命和总有机碳(TOC)降解进行考查。结果:影响化学需氧量(COD)去除率大小依次是浸渍时间负载量焙烧温度活性组分种类;催化剂最佳条件为活性组分Co,负载量6%,浸渍时间24h,焙烧温度350℃;连续重复10次使用最优催化剂,COD和TOC的含量呈现较好的相关关系;COD去除率由95.08%降到32.48%,对TOC去除率由95.45%降为26.52%。  相似文献   

10.
研究Fenton高级氧化技术对水中抗生素盐酸左氧氟沙星的去除效果, 并考察n(H2O2)∶n(Fe2+)、 H2O2投加量、 溶液初始pH值、 反应时间和初始质量浓度对去除效果的影响. 结果表明: 当n(H2O2)∶n(Fe2+)=5~25时, 盐酸左氧氟沙星、 化学需氧量(K2Cr2O7法, CODCr)和总有机碳(TOC)的去除率随二者物质的量比的增加先增加后降低; 当H2O2投加量为15 mL/L时, 盐酸左氧氟沙星、 CODCr和TOC去除率分别为88.40%,5952%,3380%; 当pH=3时, 盐酸左氧氟沙星、 CODCr和TOC的去除率分别为9240%,5952%,3451%; 盐酸左氧氟沙星、 CODCr和TOC的去除率随反应时间呈逐渐增加的趋势, 去除率随初始质量浓度的升高而下降; 当反应时间为3 h时, 去除过程基本完成. 在pH=3, 温度为20 ℃, H2O2投加量为15 mL/L, n(H2O2)∶n(Fe2+)=10的条件下, Fenton高级氧化技术对水中盐酸左氧氟沙星的去除效果最好, 达9640%.  相似文献   

11.
利用在线分光光度法对活性蓝模拟废水的Fenton降解过程进行研究,探讨了过氧化氢浓度、二价铁离子浓度、温度、pH值和活性蓝浓度等因素对活性蓝降解的影响规律.结果表明Fenton降解过程分为两个拟一级动力学过程,反应初期降解速率常数(k1)和反应后期降解速率常数(k2)差约一个数量级.k1与Fe2+初始浓度线性正相关;H_2O_2初始浓度和pH值存在最佳值,分别为3.519 mmol/L和3;提高体系温度能够加快反应达到平衡的时间,反应活化能为25.21 k J/mol.  相似文献   

12.
研究了Fenton反应产生的羟基自由基对Ⅰ型胶原蛋白的降解作用。单独的过氧化氢(H2O2),Fe2+以及超氧阴离子自由基(O2-·)均对胶原蛋白无降解作用。但是,在经过氧化氢和Fe2+构成的Fenton反应产生羟基自由基后,胶原蛋白发生了降解。胶原蛋白的降解作用随着羟基自由基的增加(H2O2+Fe2+浓度增加)而加强。但羟基自由基的生成是瞬间完成的,其对胶原蛋白的降解作用随着H2O2和Fe2+反应时间的延长而降低。  相似文献   

13.
对微波辅助H2O2降解水中苯酚进行研究,考察了不同因素对苯酚降解效果的影响.结果表明:微波辅助H2O2降解水中苯酚最佳降解条件为:对于100 mL浓度为50 mg·L-1的苯酚溶液,加入质量浓度为6%的H2O2溶液8.0 mL,在室温、微波功率500 W下,微波作用45 min,苯酚降解率可达88.76%.实验同时表明:微波与H2O2在降解苯酚时存在明显的协同效应.  相似文献   

14.
苯酚废水的光氧化降解研究   总被引:2,自引:1,他引:2  
研究了UV/Fenton、日光/Fenton、UV/TiO_2和UV/Fe~(2+)等几种光氧化体系对模拟苯酚废水的氧化降解。结果表明,在上述几种光氧化体系中,UV/Fenton体系对苯酚的氧化降解能力最强,可很快地使苯酚矿化,日光/Fenton体系的降解能力次之;而UV/TiO_2与UV/Fe~(2+)体系对苯酚的降解效果较差。反应初始pH值与催化剂Fe~(2+)用量等因素对苯酚的降解均有很大影响,光Fenton反应体系中,pH值在3~4范围内,苯酚的矿化效果较佳,pH值超过此范围,矿化率则急剧下降;苯酚的矿化率随着Fe~(2+)用量的增加而逐渐增大,但当Fe~(2+)达到一定量时,再增加Fe~(2+)用量,苯酚的矿化率反而有所下降。  相似文献   

15.
根据质量作用定律,测定了铜膜在静态腐蚀和化学机械抛光(Chemical Mechanical Polishing,CMP)两种反应条件下的化学反应速率常数;通过Arrhenius方程,测定了铜膜在两种反应条件下的化学反应活化能.结果表明:当抛光液温度为298.15 K,工作压力为13 780 Pa时,静态腐蚀条件下体系化学反应速率常数是114.80 s-1,而CMP条件下体系的化学反应速率常数是412.11 s-1,同时,CMP条件下的反应活化能为4 849.80 J,静态腐蚀条件下的反应活化能为31 870.30 J,由此得出,反应活化能的降低是CMP过程中的机械摩擦作用所致.因此,根据CMP过程中铜膜和抛光垫各自克服滑动摩擦力所作的系统功,推导出CMP过程中活化能降低值的系统功表达式,并通过改变工作压力和转速来验证该表达式的适用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号