首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic domain structure of hard magnetic Nd60Al10Fe20Co10 bulk metallic glass (BMG) has been studied by using magnetic force microscopy. In the magnetic force images it is shown that the exchange interaction type magnetic domains with a period of about 360 nm do exist in the BMG, which is believed to be associated with the appearance of hard-magnetic properties in this system. As the scale of the magnetic domain is much larger than the size of the short-range ordered atomic clusters existing in the BMG, it is believed that the large areas of magnetic contrast are actually a collection of a group of clusters aligned in parallel by strong exchange coupling interaction. After fully crystallization, the BMG exhibits paramagnetism. No obvious magnetic contrast is observed in the magnetic force images of fully crystallized samples, except for a small quantity of ferromagnetic crystalline phase with low coercivity and an average size of 900 nm.  相似文献   

2.
Nanocrystalline single-phase alloys with the nominal compositions (at%) of Nd12.3-xDyxFe79.7Zr0.8Nb0.8Cu0.4B6.0 (x=0, 0.5, 1.5, and 2.5) were prepared by melt-spinning and subsequent annealing. X-ray diffraction analysis shows that the as-spun ribbons were mainly composed of the amorphous phase. A slight content of Dy stabilizes the amorphous phase during annealing treatment. The grain size becomes smaller and the coercivity of the annealed ribbon is gradually improved with the increase of Dy content. Excessive Dy is harmful to the remanence. It is found that no intergranular phase exists between the grains by high-resolution transmission electron microscopy, and the grain boundaries are crystallographically coherent in the optimally annealed sample. The optimum magnetic properties of remanence (Jr=1.09 T), coercivity (Hci=1048 kA/m), and maximum magnetic energy product ((BH)m=169.5 kJ/m3) are obtained from the x=0.5 ribbon in a post heat-treated state (700℃, 10 min).  相似文献   

3.
在Nd2Fe14B稀土永磁体基体表面,采用磁控溅射(直流+射频)技术制备了Ti/Ni,Ti/Al和Al/Ni等二元合金薄膜和Ti/Al/Ni三元合金薄膜。并通过中性盐雾试验、腐蚀失重计算、电化学腐蚀试验、金相观察等方式,对比研究了不同表面处理对Nd2Fe14B稀土永磁体基体抗腐蚀性能的影响,并构建了腐蚀模型。研究发现:Ti/Ni,Ti/Al和Al/Ni等二元合金薄膜和Ti/Al/Ni三元合金薄膜均有效地提高了Nd2Fe14B稀土永磁体基体耐中性盐雾腐蚀和电化学腐蚀的能力;Ti/Al/Ni三元合金薄膜较Ti/Ni,Ti/Al和Al/Ni等二元合金薄膜有更优良的综合耐腐蚀性能,其磁控溅射工艺参数为:Ar流量60 sccm,基片温度常温,Ni,Al,Ti的溅射功率都为250 W,基片转速20 r·min-1,镀膜均速0.3 nm·s-1,总计溅射时间1 h。  相似文献   

4.
Relationships between the coercivity of hydrogenation disproportionation desorption recombination (HDDR) Nd12.5Fe81.5−x Co6B x bonded magnets and boron content were investigated. Nd2Fe17 phase with planar magnetic anisotropy is present in the microstructure when x= 4at%–5.88at%, which does not reduce the coercivity of the bonded magnets. High-resolution transmission electron microscopy (TEM) images show that Nd2Fe17 phase exists in the form of nanocrystals in the Nd2Fe14B matrix. There is an exchange-coupling interaction between the two phases so that the coercivity of HDDR Nd12.5Fe81.5−x Co6B x bonded magnets is hardly reduced with a decrease in boron content.  相似文献   

5.
Silicon nitride (Si3N4) powders were prepared by the direct nitridation of silicon powders diluted with α-Si3N4 at normal pressure. Silicon powders of 2.2 μm in average diameter were used as the raw materials. The nitriding temperature was from 1623 to 1823 K, and the reaction time ranged from 0 to 20 min. The phase compositions and morphologies of the products were analyzed by X-ray diffraction and scanning electron microscopy, respectively. The effects of nitriding temperature and reaction time on the conversion rate of silicon were determined. Based on the shrinking core model as well as the relationship between the conversion rate of silicon and the reaction time at different temperatures, a simple model was derived to describe the reaction between silicon and nitrogen. The model revealed an asymptotic exponential trend of the silicon conversion rate with time. Three kinetic parameters of silicon nitridation at atmospheric pressure were calculated, including the pre-exponential factor (2.27 cm·s?1) in the Arrhenius equation, activation energy (114 kJ·mol?1), and effective diffusion coefficient (6.2×10?8 cm2·s?1). A formula was also derived to calculate the reaction rate constant.  相似文献   

6.
CaO-Al2O3-SiO2 (CAS) glass-ceramics were prepared via a melting method using naturally cooled yellow phosphorus furnace slag as the main raw material. The effects of the addition of Fe2O3 on the crystallization behavior and properties of the prepared glass-ceramics were studied by differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The crystallization activation energy was calculated using the modified Johnson-Mehl-Avrami equation. The results show that the intrinsic nucleating agent in the yellow phosphorus furnace slag could effectively promote the crystallization of CAS. The crystallization activation energy first increased and then decreased with increasing amount of added Fe2O3. At 4wt% of added Fe2O3, the crystallization activation energy reached a maximum of 676.374 kJ·mol-1. The type of the main crystalline phase did not change with the amount of added Fe2O3. The primary and secondary crystalline phases were identified as wollastonite (CaSiO3) and hedenbergite (CaFe(Si2O6)), respectively.  相似文献   

7.
In this paper, the diffusion behavior between MgO and Fe2O3 (the main iron oxide in pellets) is investigated using a diffusion couple method. In addition, the distribution regulation of MgO in MgO-bearing pellets is analyzed via pelletizing experiments. The results illustrate that MgO is prone to diffuse into Fe2O3 in the form of solid solution; the diffusion rate considered here is 13.64 μm·min-1. Most MgO content distributes in the iron phase instead of the slag phase. The MF phase {(Mg1-x Fex)O·Fe2O3, x ≤ 1} is generated in the MgO-bearing pellets. However, the distribution of MgO in the radial direction of the pellets is inconsistent. The solid solution portion of MgO in the MF phase is larger in the outer layer of the pellets than in the inner layer. In this work, the approximate chemical composition of the MF phase in the outer layer of the pellets is {(Mg0.35-0.77·Fe0.65-0.23) O·Fe2O3} and in the inner layer is {(Mg0.13-0.45·Fe0.87-0.55) O·Fe2O3}.  相似文献   

8.
Interdiffusion in the Fe2O3-TiO2 system was investigated by the diffusion couple method in the temperature range of 1323 to 1473 K. The diffusion concentration curves of Ti4+ cations were obtained by electron probe microanalysis, according to which the Boltzmann-Matano method optimized by Broeder was used to calculate the interdiffusion coefficients. The interdiffusion coefficients almost increased linearly with the mole fraction of Ti4+ cations increasing, and they were in the range of 10?12–10?11cm2·s?1. The increase of temperature could also lead to the increase of the interdiffusion coefficients at a constant concentration of Ti4+ cations. It was also found that the thickness growth of the diffusion layer obeyed the parabolic rate law.  相似文献   

9.
On investigating the longitudinally driven GMI effect of the DC annealed Fe36Co36Nb4Si4.8B19.2 alloy ribbon, the current density was 3.2×10^7 A/m^2, the GMI effect responds sensitively (the sensitivity is as high as 2440.2%/(A-m^-1)) to weak magnetic field after a 600-second annealing. The experimental result shows that the sensitivity is closely related to annealing current density, driven current frequency and eroded thickness. GMI effect, current annealing, sensitivity, magnetic domain structure  相似文献   

10.
(Al65Cul20Fe15)100-x Snx (x=0, 12, 20, 30) and Al57Si10Cu18Fe15 powders were cladded on a medium carbon steel (45# steel) substrate by laser multilayer cladding, respectively. The phases and properties of the produced quasicrystalline bulks were investigated. It was found that the main phases in the Al65Cul20Fe15 sample were crystalline λ-Al13Fe4 and icosahedral quasicrystal together with a small volume fraction of θ-Al2Cu phase. The volume fraction of icosahedral phase decreased as the Sn content in the (Al65Cul20Fe15)100-x Snx samples increased owing to the formation of β-CuSn phase. The increase of Sn content improved the brittleness of the quasicrystal samples. The morphology of the solidification microstructure in the Al57Si10Cu18Fe15 sample changed from elongated shape to spherical shape due to the addition of Si. The nanohardness of the laser multilayer cladded quasicrystal samples was equal to that of the as-cast sample prepared by vacuum quenching. In terms of hardness, the laser cladded Al57Si10Cu18Fe15 quasicrystalline alloy has the highest value among all the investigated samples.  相似文献   

11.
The Er3 doped Al2O3 powders were prepared by the sol-gel method using the aluminium isopropoxide [Al(OC3H7)3]-derived Al2O3 sols with addition of the erbium nitrate [Er(NO3)3.5H2O]. The different phase structure, including three crystalline types of (Al,Er)2O3 phases, γ, θ, α, and two Er-Al-O phases, ErAlO3 and Al10Er6O24, was obtained with the 1 mol% Er3 doped Al2O3 powders at the different sintering temperatures of 600―1200℃. The green and red up-conversion emissions centered at about 523, 545 and 660 nm, corresponding respectively to the 2H11/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3 , were detected by a 978 nm semiconductor laser diodes excitation. The phase structure and OH content had evident influence on the up-conversion emissions intensity. The maximum intensities of both the green and red emissions were obtained respectively for the Er3 doped Al2O3 powders sintered at 1200 ℃, which was composed mainly of α-(Al,Er)2O3, less of ErAlO3 and Al10Er6O24 phases, and with the least OH content. The two-photon absorption up-conversion process was involved in the green and red up-conversion emissions of the Er3 doped Al2O3 powders.  相似文献   

12.
Cordierite-and anorthite-based binary glass ceramics of the CaO-MgO-Al2O3-SiO2 (CMAS) system were synthesized by mixing local and abundant raw minerals (kaolin and doloma by mass ratio of 82/18). A kinetics study reveals that the activation energy of crystallization (Ea) calculated by the methods of Kissinger and Marotta are 438 kJ·mol-1 and 459 kJ·mol-1, respectively. The Avrami parameter (n) is estimated to be approximately equal to 1, corresponding to the surface crystallization mechanism. X-ray diffraction (XRD) analysis shows that the anorthite and cordierite crystals are precipitated from the parent glass as major phases. Anorthite crystals first form at 850℃, whereas the μ-cordierite phase appears after heat treatment at 950℃. Thereafter, the cordierite allotropically transforms to α-cordierite at 1000℃. Complete densification is achieved at 950℃; however, the density slightly decreases at higher temperatures, reaching a stable value of 2.63 kg·m-3 between 1000℃ and 1100℃. The highest Vickers hardness of 6 GPa is also obtained at 950℃. However, a substantial decrease in hardness is recorded at 1000℃; at higher sintering temperatures, it slightly increases with increasing temperature as the α-cordierite crystallizes.  相似文献   

13.
Polycrystalline Fe83Ga17 alloy rods with various amounts of yttrium were prepared by high vacuum induction melting. It is found that yttrium addition has a significant effect on the structure and magnetostriction of Fe83Ga17 alloy. The small addition of yttrium alters the solidification character and the grain shape of Fe83Ga17 alloy, and as a result, columnar grains with the ??100?? preferential direction are produced. Yttrium addition improves the magnetostrictive performance of the as-cast Fe83Ga17 alloy. The magnetostriction values of the as-cast alloy with 0.32at% and 0.64at% yttrium addition go up to 119×10?6 and 137×10?6 under 15 MPa compressive stress, respectively. The energy dispersive spectroscopy (EDS) result shows that almost all of the yttrium atoms exist in the Y2Fe17?x Ga x phase. A small amount of this kind of secondary phase cannot obviously increase the saturate magnetic field.  相似文献   

14.
钕铁硼强磁性材料的冲击加载实验和数值模拟研究   总被引:1,自引:1,他引:0  
为了研究钕铁硼(Nd2Fe14B)强磁体在冲击加载作用下的动态力学性能,建立了炸药爆炸平面波冲击加载实验装置,进行了冲击加载实验.采用锰铜压阻测压技术测量了磁体中冲击波压力,获得了不同强度冲击波加载作用下磁体中冲击波压力.建立了Nd2Fe14B磁体冲击加载实验的计算模型,对炸药爆炸冲击加载磁体过程进行了数值模拟计算,计算结果与实验结果相吻合.分析了Nd2Fe14B磁体中冲击波传播规律,给出了Nd2Fe14B磁体中冲击波压力按指数规律衰减的计算公式.  相似文献   

15.
HDDR工艺对Nd_2Fe_(14)B基磁粉磁性能的影响   总被引:1,自引:0,他引:1  
氢化 歧化 脱氢 再复合(简称HDDR)工艺是生产Nd2Fe14B基永磁粉的一种特殊方法·研究了HDDR工艺制造高性能Nd Fe B磁粉时,不同HD温度和不同DR温度对磁粉性能的影响规律·利用XRD方法分析了不同工艺条件下样品的相组成·结果发现,Nd Fe B磁粉的磁性能对HD温度和DR温度敏感,合金元素Ga,Al的添加可改善磁粉的磁性能·有害相α Fe的消除可提高磁粉的剩磁,但均匀化处理不能将α Fe完全消除·HD过程中,主相Nd2Fe14B分解为NdH2,α Fe和Fe2B三相,DR过程后,主相晶粒得到细化·计算表明,主相晶粒尺寸大约为0 28μm·  相似文献   

16.
The isothermal reduction of the Panzhihua titanomagnetite concentrates (PTC) briquette containing coal under argon atmosphere was investigated by thermogravimetry in an electric resistance furnace within the temperature range of 1250–1350℃. The samples reduced in argon at 1350℃ for different time were examined by X-ray diffraction (XRD) analysis. Model-fitting and model-free methods were used to evaluate the apparent activation energy of the reduction reaction. It is found that the reduction rate is very fast at the early stage, and then, at a later stage, the reduction rate becomes slow and decreases gradually to the end of the reduction. It is also observed that the reduction of PTC by coal depends greatly on the temperature. At high temperatures, the reduction degree reaches high values faster and the final value achieved is higher than at low temperatures. The final phase composition of the reduced PTC-coal briquette consists in iron and ferrous-pseudobrookite (FeTi2O5), while Fe2.75Ti0.25O4, Fe2.5Ti0.5O4, Fe2.25Ti0.75O4, ilmenite (FeTiO3) and wustite (FeO) are intermediate products. The reaction rate is controlled by the phase boundary reaction for reduction degree less than 0.2 with an apparent activation energy of about 68 kJ·mol?1 and by three-dimensional diffusion for reduction degree greater than 0.75 with an apparent activation energy of about 134 kJ·mol?1. For the reduction degree in the range of 0.2–0.75, the reaction rate is under mixed control, and the activation energy increases with the increase of the reduction degree.  相似文献   

17.
Carbon fibre reinforced carbon and silicon carbide dual matrix composites (C/C-SiC) were fabricated by the warm compacted-in situ reaction. The microstructure, mechanical properties, tribological properties, and wear mechanism of C/C-SiC composites at different brake speeds were investigated. The results indicate that the composites are composed of 58wt% C, 37wt% SiC, and 5wt% Si. The density and open porosity are 2.0 g·cm−3 and 10%, respectively. The C/C-SiC brake composites exhibit good mechanical properties. The flexural strength can reach up to 160 MPa, and the impact strength can reach 2.5 kJ·m−2. The C/C-SiC brake composites show excellent tribological performances. The friction coefficient is between 0.57 and 0.67 at the brake speeds from 8 to 24 m·s−1. The brake is stable, and the wear rate is less than 2.02×10−6 cm3·J−1. These results show that the C/C-SiC brake composites are the promising candidates for advanced brake and clutch systems.  相似文献   

18.
The microstructure and texture evolution of twin-roll cast A8006 alloy by homogenization were characterized using scanning and transmission electron microscopy, and the microhardness was tested as well. According to the relationship between dendritic arm spacing and cooling rate the cooling rate of the as-cast twin-roll cast A8006 sheet of 6 mm in thickness was estimated as 1.48×103 K·s?1. It is found that the grains and the nanostructural precipitates of the twin-roll cast sheet become coarser after homogenization at 580℃ for 4 h in comparison with those after homogenization at 500℃ for 8 h. The textures formed after cold rolling and became weaker during homogenization. The increase in hardness of the as-cast twin-roll cast sheets is related to the supersaturated α-Al solid solution and fine microstructure, but the decrease in hardness after homogenization can be attributed to the coarsening of grains and Al6Fe(Mn) precipitates.  相似文献   

19.
Analytical-reagent-grade Al2O3 was added to magnetite ore during the process of pelletizing, and the methods of mercury intrusion, scanning electron microscopy, and image processing were used to investigate the effect of Al2O3 on the compressive strength of the pellets. The results showed that, as the Al2O3 content increased, the compressive strength of the pellets increased slightly and then decreased gradually. When a small amount of Al2O3 was added to the pellets, the Al2O3 combined with fayalite (2FeO·SiO2) and the aluminosilicate (2FeO·2Al2O3·5SiO2) was generated, which releases some iron oxide and reduces the inhibition of fayalite to the solid phase of consolidation. When Al2O3 increased sequentially, high melting point of Al2O3 particles hinder the oxidation of Fe3O4 and the recrystallization of Fe2O3, making the internal porosity of the pellets increase, which leads to the decrease in compressive strength of the pellets.  相似文献   

20.
Typical O??-sialon-based ceramics, with a formula of Si2?x Al x O1+x N2?x , where x was set as 0.25, were fabricated by in-situ synthesis. Si3N4, Al2O3, and SiO2 powders were used as raw materials, and MgO and Y2O3 were added as sintering additives. All the samples were sintered at different temperatures under a nitrogen pressure of 0.25?C0.30 MPa, and their microstructure, phase content, and thermal conductivity were evaluated. The effects of O??-sialon and ??-Si3N4 on the thermal conductivity were analyzed by numerical calculation in detail. In the case of the similar porosity, the thermal conductivity of O??-sialon-based ceramics decreased with the ratio of O??-sialon/??-Si3N4 increasing. When the ratio was 12, the thermal conductivity of O??-sialon ceramics sintered at 1360°C was 1.197 W·m?1·K?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号