共查询到19条相似文献,搜索用时 93 毫秒
1.
:以粒径为 1 ~1. 5 mm 和 2 ~4 mm 的细、粗两种天然斜发沸石为实验材料,进行氨氮吸附等温线实验和吸附动力学实验,探讨沸石对雨水中氨氮的吸附规律。结果表明,实验沸石对 NH+4的吸附等温线符合 Frundlich 公式,且细沸石和粗沸石对氨氮吸附量的极限值分别为 5. 83 mg/g 和 18. 375 mg/g;细沸石比粗沸石有更好的吸附效果;粗沸石对氨氮的吸附反应为一级反应,吸附速率常数为 0. 022 212 g. m 2. h 1。 相似文献
2.
3.
4.
斜发沸石去除氨氮及其再生的研究 总被引:1,自引:0,他引:1
为了有效去除污水中的氨氮,采用斜发沸石进行污水中氨氮的吸附去除研究,同时探讨了化学再生和生物再生的效果.结果表明,氨氮在沸石上吸附符合Langmuir吸附等温式;生物化学再生后沸石,经过2个月稳定运行,采用Na^+质量浓度2 000 mg/L,气水比为5∶1,温度为15-26.5℃时,氨氮的去除效率可超过80%.沸石可以作为一种有效的氨氮吸附材料并且可有效再生. 相似文献
5.
以天然斜发沸石为原料,研制硅基沸石滤料,并以硅基沸石滤料作为填料,研究探讨硅基沸石滤料对废水中氨氮的静态吸附作用.对比天然斜发沸石,通过质量浓度与吸附量的Langmuir曲线和Freundlich曲线,对硅基沸石滤料的吸附机理和离子交换性能进行分析.实验表明,自行研制的硅基沸石滤料符合国家标准,对氨氮的静态吸附容量可高... 相似文献
6.
斜发沸石去除废水中氨氮及其再生研究 总被引:1,自引:0,他引:1
利用天然斜发沸石离子交换脱除氨氮机理处理污水厂二级出水,通过对沸石离子交换柱的NH4+交换量、沸石柱离子交换柱的再生和再生盐水的脱氮进行分析,确定了去除污水厂二级出水中氨氮的工艺流程和适宜参数,经处理后氨氮含量低于5 mg/L,达到一级A的国家排放标准(GB198918-2002)。本研究可为污水厂二级出水中氨氮的处理提供一定的技术依据。 相似文献
7.
为了探索天然片沸石对高氨氮废水的吸附机理及最佳再生方法,选取河北省天然片沸石为研究对象,采用单因素试验法,通过吸附动力学、吸附等温线、吸附热力学进行研究。结果表明,在温度25℃下,粒径为50~600μm,氨氮质量浓度为500 mg/L时,准二级动力学方程更能准确地描述片沸石对氨氮的吸附过程,颗粒内扩散和液膜扩散在吸附过程中占主导地位;当温度为45℃,片沸石的饱和吸附量为7.81mg/g,吸附等温试验较符合Freundlich模型。吉布斯自由能ΔG<0,吸附是自发的吸热反应,适当升高温度可提高片沸石的吸附量。对饱和片沸石的最佳再生溶剂为0.1mol/L的NaCl溶液,解吸率为79%,且可多次洗脱再生。研究结果有助于进一步提高片沸石在氨氮废水处理中的经济效益和环境价值,使得沸石在工业废水处理中的应用前景更加广阔。 相似文献
8.
采用天然沸石颗粒处理模拟氨氮废水,对比研究了常温和中高温下沸石吸附效果的差异,探讨了高温下吸附过程的热力学,并优化了高温下沸石吸附氨氮废水的操作工艺。研究结果表明:天然沸石适合处理高温氨氮废水;氨氮在天然沸石颗粒上的等温吸附符合Freundlich等温吸附模型,达到极显著相关(R2>0.99);在50℃以上的高温氨氮废水中,沸石用量在40~50g/L,沸石粒径为1~2mm,搅拌转速为400~800r/min,pH值维持在5~8之内,此时沸石的氨氮吸附质量比达到2.0mg/g以上。 相似文献
9.
《中南民族大学学报(自然科学版)》2017,(3):10-13
以人造沸石为原料采用化学共沉淀方法制得磁性沸石,并对其吸附溶液中氨氮的性能进行了评价,XRD和FTIR分析表明:Fe以Fe_3O_4的形式存在于磁性沸石中;磁性沸石吸附溶液中的氨氮是一个自发的放热反应,吸附速率较快,10 min即达到吸附平衡;溶液pH 3~11时对吸附未产生明显影响,但pH低于3或高于11不利于吸附;25℃、pH为6条件下,磁性沸石对氨氮的最大吸附量为42.41 mg/g. 相似文献
10.
以吸附氨氮饱和的斜发沸石为研究对象,分别采用单独微波辐射及微波辅助溶剂法对其进行再生研究.研究发现,单独微波辐射再生效果较差,功率462 W,微波辐射12min,饱和沸石再次去除率为32.31%,再生率仅为44.88%;添加NaCl和NaOH混合液可以大大增强饱和沸石的再生效果,在NaCl和NaOH混合液浓度均为0.01mol/L,固液比1∶50,功率700W,微波辐射4min时,最佳去除率为71.92%,再生率接近100%.通过FTIR,SEM,EDS等测试手段对改性、吸附、再生前后的沸石分析发现,沸石在改性、吸附、再生过程中主要发生的是不同阳离子间交换过程.微波辐射加速了NH4+与Na+交换过程且加深了离子交换平衡程度,因此微波辅助溶剂法具有再生迅速、完全,多次再生效果基本不衰减的优点. 相似文献
11.
采用5种不同价态阳离子盐对天然斜发沸石进行改性,通过SEM,EDS,ICP以及氮吸附分析仪等测试手段对改性前后的沸石颗粒进行表征,发现不同价态阳离子和相同价态不同阳离子的盐改性沸石后对其物化性质和应用性能均会产生影响.EDS及ICP测试发现由于离子交换作用改性后沸石中5种盐对应的金属阳离子含量均会升高,其中KCl改性沸石中钾元素含量增加量最多.比表面积与孔径分布测试结果发现随着阳离子价态升高,沸石比表面积下降幅度逐渐增大,其中一价钾盐的改性沸石比表面积下降幅度最小为33.9m~2/g,三价铝盐下降幅度最大为29.27m~2/g;而改性沸石孔体积变化规律有所不同,其中一价盐改性沸石介孔体积增加量最大、大孔体积减少量最多.对不同价态阳离子盐改性沸石进行了阳离子交换容量和污水脱氮能力测试,结果表明,其阳离子交换容量和脱氮能力大小排序为:NaClAlCl_3CaCl_2MgCl_2KCl.说明改性沸石的污水脱氮能力与其阳离子交换容量呈正相关关系,但是阳离子价态的高低与改性沸石的阳离子交换容量、比表面积、孔体积和脱氮能力并不是正相关关系. 相似文献
12.
13.
水中氨氮脱除方法研究进展 总被引:2,自引:0,他引:2
牛建宇 《科技情报开发与经济》2008,18(25):105-107
叙述了目前国内外常用氨氮脱除技术研究进展情况,对多种方法的优缺点进行了剖析,对未来重要脱氮方法的高级氧化法的发展方向提出了看法。 相似文献
14.
沼泽红假单胞菌培养基的优化及降氨氮作用的研究 总被引:1,自引:0,他引:1
对沼泽红假单胞菌的培养基进行了优化,并对其降氨氮效果进行了研究.结果表明:沼泽红假单胞菌可以利用多种碳源和氮源,乳酸和草酸铵是实验室培养沼泽红假单胞菌的最适碳源和氮源,乳酸根的质量浓度及碳氮比对沼泽红假单胞菌生长具有显著影响,而磷酸根浓度对沼泽红假单胞菌生长没有显著影响;用正交试验获得最适于培养沼泽红假单胞菌的乳酸质量浓度为1%,碳氮比为1.5,磷酸二氢钾的质量浓度为1.5 g/L;在自然光照、30 ℃条件下,沼泽红假单胞菌的延滞期为2 d,对数生长期为2~10 d,稳定期为10~20 d;沼泽红假单胞菌具有很强的综合降氨氮作用,但其降氨氮效果受水质的影响而不稳定. 相似文献
15.
应用离子选择性电极法测定废水中氨氮 总被引:4,自引:0,他引:4
李敏 《华侨大学学报(自然科学版)》2007,28(1):109-110
研究应用氨气敏电极对工业废水中氨氮进行测定时,pH值、电极响应时间、氨逃逸时间,以及废水中干扰物对氨气敏电极的电极电位的影响.结果表明,当pH值大于11时,pH值对测定电极电位没有影响;氨浓度越高,电极响应时间越短,氨逃逸时间越迟;氨气敏电极具有很高的选择性,在强碱性条件下,采用EDTA作掩蔽剂,13种干扰物质对测定没有明显干扰. 相似文献
16.
泥沙是自然水体中污染物的主要载体,在吸附作用下,泥沙成为污染物的“汇”。泥沙的沉降、悬扬对于污染物的迁移和输运有着重要的影响。本文以三峡库区表层泥沙为研究对象,在自研的沉降柱中进行了不同紊动条件下的泥沙的垂向分布研究,对准一级动力学、准二级动力学、Elovich模型对吸附过程的拟合效果进行了对比。结果显示:(1)水体中的悬浮泥沙受多种因素影响,不同紊动强度、泥沙投加量以及不同深度下泥沙的分布有所差异;(2)泥沙对氨氮的吸附受泥沙垂向分布的影响,紊动强度及含沙量的改变会使得泥沙对氨氮的吸附过程及总吸附量发生改变;(3)准一级动力学、准二级动力学、Elovich模型都能够对紊动状态下泥沙吸附氨氮过程进行拟合,但不同模型对吸附变化的判断及趋势的预估有所不同。 相似文献
17.
描述了蒸馏法测定氨氮时经常遇到的问题,提出了使用改进了的蒸馏装置对水样进行蒸馏预处理,在合理控制pH的前提下,所得数据具有较高的精密度和准确度. 相似文献
18.
蒸馏—滴定法测定废水中氨氮的方法研究 总被引:2,自引:0,他引:2
对纳氏试剂光度法测定水质样品中氨氮的测定方法进行了研究,以凯氏定氮仪代替凯氏蒸馏装置.经过实际样品的测定,并与国标法进行了实验对比,证明新测定方法具有精密度好,准确度高,实验周期短,实验装置及步骤简便易行的特点.同时,用新方法对水样进行了测定,也取得了良好的结果. 相似文献
19.
水中氨氮的测定方法小结及结果分析 总被引:1,自引:0,他引:1
水中氮化合物的多少,可作为水体受到含氮有机物污染程度的指标。反映水体受含氮化合物污染程度的几种形态的氮是氨氮、亚硝酸盐氮、硝酸盐氮、有机氮。水中的氨氮是指以游离氨(或称非离子氨,NH3)和离子氨(NH4+)形式存在的氮。氨氮含量较高时,对鱼类呈现毒害作用,对人体也有不同程度的危害。水中氨氮的来源主要是生活污水中含氮有机物受微生物作用分解的产物、某些工业废水及农田排水等。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中水中氨亦可转变为亚硝酸盐,甚至继续转变为硝酸盐[1]。因此,水中的氨氮存在量对人类有重要影响,测定水中各种形态的氮化合物,有助于评价水体被污染程度和"自净"的程度,所以,测定水中氨氮具有十分重要的意义。氨氮的测定方法很多,下面我们简要介绍几种测定氨氮的方法、原理以及用各种方法对已知氨氮浓度的水样进行测定的结果分析。 相似文献