首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高重合度齿轮应力场有限元分析   总被引:1,自引:0,他引:1  
基于弹塑性接触有限元理论,建立了高重合度齿轮副的三维静态有限元分析模型,运用牛顿-拉普森方法进行求解,得到了高重合度斜齿轮接触应力沿接触线的分布状态。通过实例分析了啮合数对齿间载荷分配系数的影响,研究了不同摩擦系数时摩擦应力的分布状态。对有限元分析结果与Hertz公式计算值对比显示,前者计算的最大接触应力小于Hertz应力。运用分块Lanczos法分析了小齿轮的模态,计算了低阶固有频率和主振型。  相似文献   

2.
根据齿轮传动中轮齿折断和齿面点烛疲劳破坏现象,基于齿轮啮合原理,对斜齿轮啮合过程的力学性能及疲劳寿命预测进行研究,结合实例分析计算齿轮传动过程中齿面接触应力变化规律和齿根弯曲应力变化规律;利用ANSYS建立斜齿轮副有限元模型,分析齿面接触应力和齿根弯曲应力,将其与理论计算结果比较,验证有限元分析方法的正确性;利用FE-SAFE中的名义应力分析法对斜齿轮副的危险部位进行疲劳寿命预测.  相似文献   

3.
齿轮啮合动态接触过程仿真分析   总被引:1,自引:0,他引:1  
以圆柱体接触力学相关原理为基础,基于Ansys/Ls-dyna操作平台,对齿轮啮合过程动态接触应力进行有限元仿真分析.将啮合齿轮等效为两圆柱体接触,以等效圆柱体的接触应力作为齿轮接触应力,将有限元计算结果与Hertz理论进行对比分析发现,齿轮接触过程最大接触应力与Hertz理论较为接近,说明该等效模型的正确性.在单齿啮合区,其接触应力较双齿啮合处有所增加;在双齿啮合区,其最大接触应力较为平稳.轮齿两端处的接触应力远大于齿面中间处的接触应力,在轮齿中间区域,其接触应力分布比较均匀.  相似文献   

4.
以某型直升机尾减速器的弧齿锥齿轮副为研究对象,基于其非线性有限元接触分析模型,在一个啮合周期内,对该齿轮副进行了连续动态啮合过程的仿真,研究了该型轮齿的动态啮合齿面接触和齿根弯曲疲劳性能.啮合过程仿真得到的齿面接触和齿根弯曲应力的变化规律符合轮齿实际动态啮合规律.疲劳过程仿真得到了疲劳寿命分布云图并判断出轮齿疲劳破坏主要发生在齿根受压侧的倒角区域,进而得到了经渗碳处理前后齿根疲劳破坏节点位置的疲劳寿命值.  相似文献   

5.
利用大型三维设计软件UG进行二次开发,建立了差速器的参数化造型系统,该系统能够根据输入的参数精确而快速地生成差速器齿轮的三维模型,大大提高了设计质量和设计效率.同时,将建立的差速器齿轮三维模型无缝连接到有限元软件中,对差速器齿轮进行静强度分析以及动态接触分析.分析结果表明所设计的行星齿轮和半轴齿轮最大弯曲应力在齿根部位且小于许用应力值,齿面接触应力远远小于材料许用接触应力,因此齿轮不会出现接触疲劳破坏.  相似文献   

6.
为得到直升机主减速器分扭传动系统中关于直齿轮的疲劳寿命评估方法,在Lundberg-Palmgren疲劳寿命理论(L-P理论)和Hertz接触理论的基础上建立主动轮单齿疲劳寿命评估模型。该模型所需参数主要与轮齿啮合时的最大Hertz接触应力相关。为利用有限元分析软件ANSYS求解此应力,确定主动轮单齿在啮合区的各啮合界点,并推导啮合区上的载荷分布规律,得到基于载荷谱多工况作用下主动轮的疲劳寿命评估方法,并针对某直升机在单工况作用下的直齿轮给出疲劳寿命评估算例。研究结果表明,该方法所得疲劳寿命估算值比试验值更加保守,是一种安全、有效的疲劳寿命估算方法。  相似文献   

7.
为了预测轴承钢硬切削表面残余应力对滚动接触寿命的影响规律,基于高级非线性有限元分析软件MARC,建立了具有平面应变特征的二维滚动接触寿命预测模型,并在二维有限元模型的表面和次表面对应施加了轴承钢硬切削实验所测残余应力,模拟计算典型服役条件下的滚动接触应力;采用基于S N寿命理论的Miner法则,计算轴承钢滚动界面的疲劳接触寿命,分析了在不同摩擦系数、滚动接触频率和外加载荷工况下,硬切削残余压应力对疲劳寿命的影响.结果表明,硬切削残余压应力可使轴承钢的滚动接触疲劳寿命提高10%~30%.其中,载荷对滚动接触疲劳寿命影响最大,摩擦系数的影响最小.  相似文献   

8.
自升式平台齿轮齿条强度有限元分析   总被引:8,自引:2,他引:8  
基于有限元软件ANSYS建立某自升式平台升降系统齿轮齿条的三维模型,并计算平台在预压状态下齿轮齿条的应力,分析齿轮齿条在不同啮合位置时的Von mises 应力和齿面接触应力的分布情况,并将其与公式计算值进行对比.结果表明:齿轮齿条啮合过程中接触面上应力呈带状分布,最大应力出现在带状区域的两端,带状区域的中部应力相对较小;齿面和齿根是齿轮齿条啮合接触过程中容易失效的部位,升降系统齿面接触应力与齿根弯曲应力偏高,在升降系统的设计中应采取措施降低相应应力或提高材料强度;基于有限元方法的计算结果与公式计算值误差较小,可以作为该齿轮齿条强度分析的依据.  相似文献   

9.
根据齿轮精度标准中误差的定义和说明,提出一种用于齿轮动力学分析的安装与制造误差等效定义,采用Pro/E二次开发,建立带有安装与制造误差的齿轮参数化模型;基于动态接触力学和显式动力学有限元算法,建立齿轮有限元模型;采用大变形显式动力学软件ANSYS/LS-DYNA对其进行动态仿真,从而实现求解齿轮在接触过程中安装与制造误差影响下的动态接触应力.研究表明,各类随机误差愈大,则对齿轮啮合冲击应力的影响愈大,其中齿距方向的偏差和啮合面上转角误差对齿轮接触应力的影响最大,啮合垂直面上转角误差的影响最小,当齿轮的安装误差与制造误差同时存在时,齿面接触应力变化最为剧烈.  相似文献   

10.
渐开线直齿圆柱齿轮有限元仿真分析   总被引:2,自引:0,他引:2  
利用ANSYS软件对齿轮变形和齿根应力进行了有限元计算,建立了一对齿轮接触仿真分析的模型,利用ANSYS的面面接触单元进行齿轮接触仿真分析,计算了齿轮啮合中的接触应力和接触变形,说明了ANSYS在齿轮计算尤其在接触分析上的有效性,为齿轮的优化设计和可靠性设计及CAE奠定了基础.  相似文献   

11.
采煤机截割部行星齿轮传动载荷较大,常出现接触疲劳失效。针对这一问题,通过CAXA软件建立齿轮二维模型导入PRO/E软件后的实体模型,并利用ABAQUS/Explicit作为仿真平台,对齿轮啮合装配并进行非线性啮合接触分析,研究齿轮啮合传动时应力在齿轮轮齿的分布情况。结果表明:接触应力沿齿宽方向分布明显偏置,最大接触应力主要分布在太阳轮轮齿动力输入端的边缘部分。单齿啮合、两对齿啮入和啮出时,最大接触应力分别为1 264、1 529和869 MPa。  相似文献   

12.
设计双模数啮合齿轮泵,对主、从动齿轮啮合过程及接触强度进行了仿真研究.将两种不同模数的齿轮进行匹配,设计双模数主、从动齿轮,提高齿轮的排量;以刚度、阻尼、摩擦系数模拟齿轮之间的油膜间隙,对主、从动齿轮的工作过程进行仿真研究,再利用Workbench对主、从动齿轮进行接触有限元分析.计算分析结果表明:双模齿轮泵排量是同体积齿轮泵的2~6倍,齿轮泵工作时,第一对小齿啮合时接触应力最大,从动齿轮工作过程中的变形量大于主动齿轮,两齿轮的安全系数较大,强度能够满足使用要求.  相似文献   

13.
蜗轮蜗杆是碟式太阳能方位角驱动机构的重要部件,为确保方位角驱动机构能够安全平稳的工作,要求蜗轮蜗杆工作时的接触应力小于材料许用应力.本文采用参数化建模法建立了蜗轮蜗杆实体模型并导入ABAQUS中得到多齿对蜗轮蜗杆接触有限元模型;基于非线性接触分析法,探索了蜗轮蜗杆啮合瞬间接触齿面的应力分布状况.结果表明:基于ABAQUS的蜗轮蜗杆接触应力结果与赫兹接触应力理论计算结果之间误差仅为1%,蜗轮蜗杆接触应力均远低于相应材料的许用应力,但齿根处最大应力值达到了258.3 MPa,且有明显应力集中现象,而增大齿根过渡圆半径能有效降低齿根应力,增大齿轮接触强度,但当过渡圆半径大于5 mm以后,蜗轮蜗杆难以正常啮合甚至已不能正常工作.  相似文献   

14.
链传动啮合冲击理论分析及有限元模拟   总被引:1,自引:0,他引:1  
啮合冲击是引发链传动产生振动、噪声以及链条零部件发生疲劳损坏的主要原因,因此,精确地分析与计算啮合冲击载荷是进行轮齿强度计算以及链传动系统动力学研究的重要内容.为此,建立了链轮轮齿滚子间啮合冲击动力学模型,计算了啮合冲击力幅值;采用赫兹接触理论,对齿面接触应力进行了静态条件下的理论计算;建立了套筒滚子链传动系统有限元模型,采用三维弹性接触问题有限元分析方法,对轮齿滚子间的啮合冲击效应进行了精确模拟,分析了具有标准齿廓形状轮齿滚子瞬时啮合时,冲击载荷变化规律及应力分布情况.计算结果表明:在动态条件下轮齿滚子作为弹性体发生冲击接触时,接触区域变形并非理想的长方形区域;轮齿齿面的冲击接触力分布是不均匀的;在理论接触区域两侧冲击应力较大;在考虑了链轮齿形、间隙及弹性变形等多种影响因素的条件下,动态冲击载荷远大于静态条件下的理论计算值.  相似文献   

15.
为了提高渐开线齿轮齿根的承载能力,结合啮合原理和APDL语言对齿条型刀具展成的齿轮进行了参数化有限元建模。采用有理二次Bezier曲线替代齿轮原有的齿根过渡曲线,应用ANSYS内嵌的优化方法寻求有理二次Bezier曲线权因子的最优解使齿根弯曲拉应力最小,通过悬臂梁模型对优化结果进行解析计算并对啮合齿轮进行三维有限元接触应力分析。研究结果表明:对于给定参数齿轮,优化齿轮相对未优化齿轮齿根弯曲拉应力降低了约21%,解析计算结果与数值仿真结果基本一致,验证了优化结果的准确性;三维接触分析的等效接触应力基本不变而接触应力稍有减小,由于加载位置和有限元模型的不同,齿根弯曲拉应力降低的百分比有所减小。但综合来看,在齿面接触强度稍有提高的情况下,优化的齿轮比未优化的齿轮表现出较高的齿根弯曲强度,对齿轮的传动非常有利。  相似文献   

16.
基于虚拟载荷谱技术,提出一种新的疲劳寿命计算方法.以锥齿轮减速系统作为研究对象,对齿轮接触模型进行有限元分析,得到锥齿轮传动工况的应力分析结果及云图数据.将应力结果进行数据处理,得到锥齿轮的虚拟载荷谱.根据Miner准则和Corten-Do-lan准则估算出锥齿轮传动的疲劳寿命,并与仿真云图寿命结果相比较.应用实例表明,基于虚拟载荷谱计算的疲劳寿命分析结果具有较高的安全性和可靠性,具有较大的工程应用价值.  相似文献   

17.
建立了风电增速箱输出级斜齿轮副的三维接触有限元模型,计算了静载荷作用下齿轮副的应力应变;基于齿轮材料的疲劳试验常数,计算了材料的近似S-N曲线;对风电增速箱真实载荷谱20种工况的载荷历程进行雨流计数,得到载荷循环数、均值与幅值的关系。在FE-SAFE软件中,对斜齿轮副接触模型进行疲劳寿命分析,研究了载荷、表面粗糙度、残余应力以及轮齿修形量对齿轮副疲劳寿命的影响规律。结果表明,齿轮副应力集中处有少数低寿命点,齿轮副寿命随载荷及齿面粗糙度的增大而减小,残余拉应力使疲劳寿命减小,而残余压应力可使疲劳寿命增大,适度修形可提高齿轮的疲劳寿命。  相似文献   

18.
应用自主开发的齿轮三维动力接触有限元分析程序计算了齿轮啮合时变刚度激励、误差激励和啮合冲击激励,用I-DEAS软件建立了同轴双输出行星齿轮减速器有限元模型,并对减速器的固有特性及内部动态激励下的动态响应和结构噪声进行了仿真分析.计算表明不会出现齿轮箱固有频率与传动轴转频或齿轮啮合频率合拍的现象,结构噪声的最大值均出现在齿轮啮合频率附近.  相似文献   

19.
基于综合变位与节锥外啮合原理,提出了一种高减比、少齿数弧齿锥齿轮设计方法,阐述了节锥外啮合的轮齿几何演变规律.根据等弯曲强度和轮齿几何约束条件,选取了合适的变位系数,完成了齿轮副几何参数计算.以齿数比4:41的弧齿锥齿轮为例,建立了精确的三维轮齿模型.通过动态有限元仿真,得到了齿面瞬时接触椭圆、接触应力与齿根弯曲应力....  相似文献   

20.
影响钢轨疲劳裂纹萌生寿命的主要因素分析   总被引:1,自引:0,他引:1  
建立了钢轨3维弹塑性有限元计算模型,分析了接触斑内应力应变场特点.分析结果表明,在接触斑内钢轨处于三向压缩应力状态,有较大的静水压力;认为静水压力影响滚动接触疲劳裂纹萌生寿命.以临界平面法为基础,提出了考虑静水压力影响的滚动接触疲劳裂纹萌生寿命预测模型,分析了轮载和摩擦系数对疲劳裂纹萌生的影响.结合具体算例分析表明:随着静水压力增大,静水压力对滚动接触疲劳裂纹影响在增大;随着轮载和摩擦系数增加,滚动接触疲劳裂纹萌生寿命迅速减少.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号