首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
受风速随机变化的影响,风电输出功率具有波动性。为了平抑风电输出功率的波动,在配置电池储能系统的基础上,文中基于风电短期平均功率预测技术,以风电时间周期T的平均功率为对象,采用时间序列法进行预测,实时滚动预测未来每个时间周期T的平均功率,结合平抑度要求和电池荷电状态限制条件,控制并网功率在每个时间周期T都保持在平均功率附近的可接受范围内,分段平抑功率波动。其中,根据电网对风电功率波动的可接受程度,设置平抑度,为防止电池过充放电,对电池SOC进行限制。最后以某风电场的实际历史数据为例,在Matlab中进行了仿真分析,验证了所述方法的有效性。  相似文献   

2.
 对风电场风速和风电功率预报进行客观准确的评判,可以有效促进风电场风速和风电功率预报水平的提升,为减缓风电并网对电网的影响服务.本文在对风电场风速和风电功率预报准确率评判方法进行全面回顾的基础上,分析了常用数学预报准确率评判法、相对于风电场额定值的预报准确率评判法、等级预报准确率评判法和与风力发电特征紧密结合的风电场风速预报准确率评判法.同时还分析了这4类风电场风速和风电功率预报准确率评判方法的特质,及其与风力发电特征的结合程度和适用范围.  相似文献   

3.
基于风场数据,利用风电机组功率特性曲线,采用支持向量机(Support Vector Machine,SVM)非线性拟合方法,设计了一种基于变分模态分解(Variational Model Decomposition,VMD)的粒子群优化支持向量机短期功率预测算法.首先,通过VMD将原始风功率序列分解为多组平稳的固有模态函数和趋势项,对风电功率数据进行预处理;其次,利用粒子群算法优化(Particle Swurm Optimization,PSO)支持向量机参数,建立VMD-PSO-SVM组合预测算法模型,对每组固有模态函数和趋势项进行预测,得到多组预测结果,再将其重组,得到功率预测结果;最后,将预测结果与其他预测算法进行对比,结果表明预测精度更高.  相似文献   

4.
由于风力发电所利用的近地风能具有波动性、间歇性、低能量密度等特点,对风电场的发电功率进行尽可能准确的预测是风电发展的关键.本文根据某风场的实测数据,采用了时间序列中的自回归移动平均模型(ARMA),对风电功率进行了实时预测;为进一步提高风电功率实时预测的精确性,本文提出了一种基于BP神经网络和ARMA组合模型的预测方法,并对上述实测数据采用该方法进行了实时预测.预测结果表明:组合模型的预测结果与单独的自回归移动平均模型相比,风电功率的实时预测的均方根误差和百分比误差分别减少了4.01%和3.25%,工程中可以采用该组合模型对风电功率进行预测.  相似文献   

5.
针对传统风电功率预测精度低、效果差的问题,设计一种风电功率预测模型.首先,采用密度峰值聚类对实测数据去噪,并结合遗传算法(genetic algorithm, GA)优化变分模态分解(variational mode decomposition, VMD)获取最优分解个数,完成初始信号分解;其次,以双向长短期记忆(bi-directional long short-term memory, BiLSTM)网络为基础建立预测模型,预测分解后的各组数据;最后,对比其他模型验证参数正确性和模型精度.结果表明,遗传算法可获取变分模态分解中的最优分解个数,且BiLSTM网络模型的精度和适应性优于其他模型.  相似文献   

6.
受数值天气预报信息影响,风电功率变化具有较强的随机波动性,传统单一预测模型精度较低,难以满足现实预测需求。为此,提出基于LSTM-XGboost组合的超短期风电功率预测方法。首先,基于风电场的气象数据,采用皮尔逊相关系数法筛选与风电功率强相关的气象数据,建立风电功率预测模型数据集;然后,将归一化处理的数据集作为LSTM(long short-term memory)和XGboost (extreme gradient boosting)的模型输入,分别构建LSTM和XGboost的超短期风电预测模型,在此基础上,采用误差倒数法对LSTM和XGboost的预测数据进行加权构建组合预测模型;最后,以张家口某示范工程风电场实际运行数据验证组合模型的有效性。结果表明,相较于其他4种单一预测模型,组合模型具有更高的预测精度。  相似文献   

7.
近年来,风电装机规模逐年增加,风电数据采集量呈现规模化增长,面对海量多维、强波动的风电数据,风电功率预测精度仍面临一定的挑战。为提高风电功率预测精度,提出了基于卷积神经网络(convolutional neural networks, CNN)-长短期记忆网络(long short-term memory, LSTM)和梯度提升学习(light gradient boosting machine, lightGBM)组合的超短期风电功率预测方法。首先,分别建立CNN-LSTM和lightGBM的风电功率超短期预测模型。其中,CNN-LSTM模型采用CNN对风电数据集进行特征处理,并将其作为LSTM模型的数据输入,从而建立CNN-LSTM融合的预测模型;然后,采用误差倒数法对CNN-LSTM和lightGBM的预测数据进行加权组合,建立CNN-LSTM-lightGBM组合的预测模型;最后,采用张北曹碾沟风电场的风电数据集,以未来4 h风电功率为预测目标,验证了组合模型的有效性。预测结果表明:相较于其他3种单一模型,组合模型具有更高的预测精度。  相似文献   

8.
为了提高风电场输出功率的预测精度,在保证安全操作的前提下,建立了一种基于集合经验模态分解(EEMD)、改进引力搜索算法(IGSA)、最小二乘支持向量机(LSSVM)相结合的风电功率组合预测模型.首先运用EEMD算法将风电功率时间序列分解成一系列复杂度差异明显的子序列;其次利用相空间重构(PSR)对已分解好的子序列进行重构,对重构后的每个子序列分别建立IGSA-LSSVM预测模型,为分析不同核函数构造LSSVM的差异性,建立了8种核函数LSSVM预测模型,利用IGSA算法求解其模型;最后以中国内蒙古地区的某一风电场为算例,仿真及验算结果表明,利用IGSA算法寻优得到的指数径向基核函数核参数和惩罚因子构建的LSSVM模型具有较高的预测准确性;与EEMDWNN,EEMD-PSO-LSSVM等5种常规组合模型相比,所提出的指数径向基核函数的EEMD-IGSA-LSSVM组合模型能有效、准确地进行风电功率预测.  相似文献   

9.
为进一步提高风电功率预测精度,提出一种基于麻雀搜索算法(SSA)优化VMD参数的组合预测方法。首先,使用麻雀搜索算法对VMD参数进行优化,并利用优化后的VMD对数据进行分解;其次,结合灰色关联分析法和熵权法对环境变量进行相关性分析,选择相关性最高的影响因素与分解得到的各模态分量组合作为LSTM预测模型的输入,获得更为精确的预测结果;最后,建立基于非参数核密度估计(NKDE)的风电功率概率预测模型,实现对风电功率预测结果不确定性的有效量化。结果表明,所提组合模型的MAE,RMSE和MAPE比VMD-LSTM模型的分别下降了39.51%,33.22%和40.39%。SSA-VMD-LSTM-NKDE组合模型不仅能够有效提高确定性预测的精度,而且还能够实现对风电功率预测结果不确定性的有效量化,为风电功率预测提供了科学决策依据。  相似文献   

10.
针对风电功率预测问题进行研究,为了提高风电功率预测的精度,首先利用拉依达法则对原始数据进行预处理,以此来保证数据的完整性和准确性,其次利用梯度提升决第树算法构建时间预测模型,并对该模型进行计算和验证。根据本研究的日前预测问题,将其同常规BP神经网络算法相比较,结果显示所提出的基于GBDT的风电功率预测模型较BP神经网络在该问题上具有更优的预测性能。  相似文献   

11.
针对在Markov链超短期风电功率预测过程中未考虑风电功率变化趋势,在不同风电功率变化区间均采用同一状态转移概率矩阵,导致预测精度欠佳的问题,提出了一种基于Mycielski方法改进的Markov链预测方法.首先利用Mycielski方法在风电功率历史序列中寻找最长长度的重复序列,然后将计算每一时刻Markov链状态转移概率矩阵的序列重新定义,最后利用每一时刻的Markov链状态转移概率矩阵进行风电功率预测.对我国某风电场超短期风电功率进行总体预测.结果表明,在均方根误差的对比上,基于Mycielski方法改进的Markov链预测方法能够提高14.15%的预测精度,具有一定的实用价值.  相似文献   

12.
提高短期风电功率预测精度是风电大规模发展的迫切要求,同时也是保障风电并网运行的关键。笔者在不增加模型复杂度的前提下,提出了聚类建模方法。该方法首先采用减法聚类与模糊C均值聚类(FCM)方法相结合对训练样本进行处理,然后建立不同聚类集下对应的预测模型库,最后将预测数据与聚类后的样本数据进行匹配,选择合理的模型进行预测。采用山西某风电场实际数据进行大量仿真,并将预测结果与单一模型结果对比,结果表明,该方法可以减少大的预测误差点数,有效提高风电功率预测精度。  相似文献   

13.
针对短期风电功率预测,将风电输出功率作为时间序列信号,由于其所具有波动性、非平稳性的特点,提出一种基于经验模态分解(EMD)、粒子滤波(PF)和广义回归神经网络(GRNN)的组合预测模型。首先,利用EMD对风电功率序列进行分解,获得各个相对平稳的模态分量;然后,将分解得到高离散度的数据采用PF进行分析处理,低离散度的数据采用GRNN进行分析处理,其中,通过粒子群算法(PSO),根据各低离散度数据自身特点优化GRNN的平滑因数,以进一步提高其预测性能和精度;最后,通过线性叠加各分量的预测结果得到最终风电功率的预测值。结果表明,与PSO-GRNN和单一GRNN结构相比,EMD-PF-GRNN预测模型的预测误差降低了6%左右,预测精度更高,可以更好的预测风电功率。  相似文献   

14.
一种考虑时空分布特性的区域风电功率预测方法   总被引:3,自引:0,他引:3  
为了有效解决风电场数据丢失时直接相加法无法进行区域风电功率预测的问题,提出了一种考虑时空分布特性的区域风电功率预测方法.为降低模型的复杂性,根据风电场及风能信息对子区域进行具体分析.在此基础上,利用相关系数法,选择风电场出力与子区域出力间相关系数绝对值大的风场为基准风电场.以所选基准风电场预测功率为输入,利用神经网络方法,直接预测各子区域功率,整个区域预测结果为各子区域预测值之和.算例结果表明:利用相关系数法选择基准风电场无需大量历史数据支撑,原理简单易于实现;模型与风电场所采用的预测系统无关,易于工程推广应用;模型无需考虑非基准风电场功率预测情况,成本更低、效益更高;采用该模型后子区域预测误差比直接相加的方法降低了5%,整个区域预测误差仅为20.8%.  相似文献   

15.
风电具有很大的随机性、间歇性和不可控性,大容量的风电接入电网将会对电力系统安全、稳定运行带来严峻的挑战,若能对风电场的风场进行短期预报,将是解决这一问题的有效途径。利用中尺度数值模式与风电功率统计预报模型,构建了山西省风电功率短期预报系统。通过模拟发现,预报的发电量与实际电量的一致性和相关性较好,可以满足风电场风电功率预报的服务要求。  相似文献   

16.
针对BP神经网络动态性能的不足、适应性较差的问题,提出了基于自适应Elman神经网络的短期风电功率预测模型。通过对比不同隐含层数的Elman预测模型的预测误差,选取最小误差的隐含层数作为自适应Elman预测模型的隐含层数;根据不同的训练集和预测集的输入,自动调节Elman隐含层节点数,实现隐含层节点数的自适应,寻求具有最佳隐含层节点数的预测模型,提高了风电功率预测精度。  相似文献   

17.
近年来,中国的风力发电产业高速发展。然而风力发电具有不稳定性,风电功率超短期预测结果的准确性直接影响到电网安全有效的运行。为了进一步提高风电功率超短期预测的精确度,提出了长短期记忆网络-注意力模型(AM-LSTM)风电功率预测模型,该模型将长短期记忆网络(long-term and short-term memory,LSTM)和注意力模型(attention model,AM)相结合, LSTM网络能够处理好风速、风向等时间序列变量与风电功率之间的非线性关系,注意力模型能够优化LSTM网络的权重,从而使预测结果更加准确。采用真实的风电场历史数据进行实验,结果表明:提出的AM-LSTM预测模型能够有效利用多变量时间序列数据进行风电场发电功率的超短期预测,比传统的BP神经网络和LSTM网络具有更精确的预测效果。该预测模型为风电场地电力调度提供了科学参考。  相似文献   

18.
随着我国风电产业迅速发展,风电并网规模不断扩大,准确预测风电场输出功率是降低风电波动对电网影响、提高电能质量、保证电网稳定运行的有效途径.本文采用箱型分析及热卡填充的方法对数据集中的异常数据进行清洗与重构.采用遗传算法与EEMD分解算法相结合的方式改进BP算法,并且根据不同时间尺度预测结果对比,相对于传统预测模型而言,...  相似文献   

19.
狄淼  王明刚 《科学技术与工程》2012,12(29):7713-7718
利用灰色预测法、人工神经网络法、ARMA时间序列法3种不同的预测模型对某风电场的风电功率进行了预测研究。计算结果表明,利用单一预测模型进行预测的精度有待提高。提出建立组合预测模型对风电功率进行预测,为了充分利用单一预测方法的优势,引入熵值理论。利用熵值法确定组合预测模型中的权重,进而建立熵权组合预测模型。模拟结果表明,熵权组合预测模型可以有效地提高风电功率的预测精度。  相似文献   

20.
为了提高风电功率预测精度,提出了一种基于变分模态分解(VMD)和改进的最小二乘支持向量机(LSSVM)的短期风力发电功率预测新模型。利用VMD将功率历史数据分解成趋势分量、细节分量和随机分量以降低原始数据的复杂性和不平稳性,然后建立IBA-LSSVM预测模型,利用改进蝙蝠算法(IBA)对最小二乘向量机的参数进行优化,并分别对各个子模态进行预测,叠加子模态的预测结果以得到最终的发电功率预测值。对宁夏某风电厂功率预测结果证明了该模型的有效性,通过不同预测模型的对比验证了模型具有较高的预测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号