首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
通过研究集合S={ 1,2 ,… ,n}上变换σ的动力系统性质 :(1)得到了σ的标准分解式 :σ =(q11q12 …q1t1 ) ∧ (q2 1q2 2 …q2t2 ) ∧ … (qm1qm2 …qmtm) ∧ (j11j12 …j1n1 ) (j2 1j2 2 …j2n2 )… (jk1jk2 …jknk) ;(2 )证明了 :|H n | =∑ni =0Cin(n-i) i(n-i) ! ,其中H n ={σ∈Hn|σk+ 1=σ ,k =1,2 ,3,… } .  相似文献   

2.
V(Fm Fn)={w}∪{ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(Fm Fn)={wui|i=1,2,…,m}∪{uivij|i=1,2,…,m,j=1,2,…,n}∪{uiui+1|i=1,2,…,m-1}∪{vijvij+1|i=1,2,…,m;j=1,2,…,n-1}对图G的一个正常的k边染法f,若 e∈E(G),e=uv,{f(uw)|uw∈E(G)}≠{f(uw)|uw∈E(G)}则称f为G的一个k-邻强边染色法,k的最小值称为G的邻强边色数。本文得到了Fm Fn的边色数和邻强边色数。  相似文献   

3.
V(Fm Kn)={w}∪{ui|i=1,2,…,m}∪{uij|i=1,2,…,m;j=2,3,…,n},E(Fm Kn)={wui|i=1,2,…,m}∪{uivij|i=1,2,…,m;j=2,3,…,n}∪{uiui+1|i=1,2,…,m-1}∪{vijvik|i=1,2,…,m;j=2,3,…,n-1;k=j+1,j+2,…,n},对图G的一个正常的k边染色法f,若 e∈E(G),e=uv,{f(uw)|uw∈E(G)}≠{f(vw)|vw∈E(G)},则称f为G的一个k 邻强边染色法,k的最小值称为G的邻强边色数,从而得到了Fm Kn的边色数和邻强边色数  相似文献   

4.
图Fm(△)Fn的边色数和邻强边色数   总被引:1,自引:0,他引:1  
V(Fm(△)Fn)={w}∪{ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(Fm(△)Fn)={wui|i=1,2,…,m}∪{uivij|i=1,2,…,m,j=1,2,…,n}∪{uiui+1|i=1,2,…,m-1}∪{vijvij+1|i=1,2,…,m;j=1,2,…,n-1}对图G的一个正常的k边染法f,若e∈E(G),e=uv,{f(uw)|uw∈E(G)}≠{f(uw)|uw∈E(G)}则称f为G的一个k-邻强边染色法,k的最小值称为G的邻强边色数.本文得到了Fm(△)Fn的边色数和邻强边色数.  相似文献   

5.
设{Xn,n≥1}为一严平稳ρ 混合的正的随机变量
序列, 满足EX1=μ>0, Var X1=σ2<∞. 记Sn=∑〖DD(〗n〖〗i=1〖DD)〗X
i, Tn=∑〖DD(〗n〖〗i=1〖DD)〗Si, γ=σ/μ. 利用ρ 混合序列的强极限定理
, 在较弱的条件下证明了〖JB((〗∏〖DD(〗n〖〗k=1〖DD)〗〖SX(〗2Tk〖〗k(k+1)
μ〖SX)〗〖JB))〗1/(γσ1〖KF(〗n〖KF)〗)〖FY(〗d〖FY)〗e〖K
F(〗10/3〖KF)〗N(n→∞),
其中: σ21=1+〖SX(〗2〖〗σ2〖SX)〗∑〖DD(〗∞〖〗j=2〖DD)〗Cov(X1,X
j)>0; N为标准正态随机变量.  相似文献   

6.
n(n≥2)条长为2的路具有两个共同的端点的二分图记为A(n)=(X,Y,E),其中X为2n度顶点集合,Y为2度顶点集合,记X={u1,u2},y=v0,v1,…,vn-1,A(nj)=(Xj,Yj,Ej)(nj≥2)中的Xj={uj1,uj2},Yj={vj1,vj2,…,vjnj-1}(j=1,2,…,m),用一条边连接vjnj-1与uj2+1(j=1,2,…,m-1)得到的图记为∧from j=1 to m A(nj).图∪from i=1 to n ∧from j=1 to m_i A(n_j)是n个∧from j=1 to m_i的不交并.本文证明了∪from i=1 to n ∧from j=1 to m_i A(n_j)是优美的且是交错的.  相似文献   

7.
若■=n!/(i!(n-i)!)(n,i∈N~*且n≥i)表示二项式系数,第l个Fibonacci数为F_l,其中,l是非负的整数;对任意正整数n和非负整数k,数列{■}_(i=0)~n和{F_(k+i)~p}_(i=0)~n的卷积为f(k,p,n)=■F_k~p+■F_(k+1)~p+…+■F_(k+n)~p.论文利用初等数论方法证明了p=4m(m∈N~*)时,等式f(k,4m,n)=1/25~m[L_(2m)~n·L_(4mk+2mn)+C_(4m)~1(-1)~(k+n+1)L_(2m-1)~nL_((4m-2)k+(2m-1)n)+C_(4m)~2L_(2m-2)~n L_((4m-4)+(2m-2)n)+C_(4m)~3(-1)~(k+n+1)L_(2m-3)~nL_((4m-6)k+(2m-3)n)+…+C_(4m)~(2m)·2~n]成立.  相似文献   

8.
对图G的一个正常的k边染色法f,若 e∈E(G),e = uv,{f(uw) | uw∈E(G)}≠{f(vw) | vw∈E(G)},则称f为G 的一个k 邻强边染色法,k的最小值称为G 的邻强边色数.V(Fm Sn) = {w}∪{ui | i =1,2,…,m}∪{vij | i =1,2,…,m;j =1,2,…,n},E(Fm Sn) = {wui | i =1,2,…,m}∪{uivij | i =1,2,…,m;j =1,2,…,n}∪{uiui+1 | i =1,2,…,m-1}.  本文得到了Fm Sn 的边色数和邻强边色数.  相似文献   

9.
一个变分双曲型组的解   总被引:3,自引:0,他引:3  
本文研究带Dirichlet条件的边界值问题{□u+△G(u)=f(t,x),(t,x)∈Ω≡(0,π)×(0,π), (*)u(t,x)=0, (t,x)∈aΩ,的解的存在性,这里口是波算子a2/at2-a2/ax2,GRn→R是一连续函数.设σ(口)={k2-m2,k,m∈N}记波算子口的特征值的集合,(a2G(u)/auiaui)记u∈Rn.点处的Hessian阵.假定σ((a2G(u)/auiauj))∩σ(□)=φ.再设E={u|u(t,x)=∑k,mψkm(t,x)Ckm, Ckm ∈ Rn k,m ∈ N,∑k,m(k2+m2+1)|Ckm|2 <+∞},Y={y|y(t,x)=∑i,k,mμikmψkm(t,x)ei,k2 - m2 <γi(u),μikm ∈ R,k,m ∈N,∑k,m(k2+m2+ 1)|μikm|2<+∞,i= 1,2,……,n} Z={z|z(t,x)=∑i,k,mμikmψkm(t,x)ei,k2 -m2>γi(u),μikm ∈ R,k,m ∈ N ,∑k,m(k2 + m2+1)|μikm|2 <+ ∞,i = 1,2,……,n}.对Y中的k2-m2记ξ(‖u‖0) =min‖v‖0≤‖u‖0 mink,m∈N min1≤i≤n{γi(v)-(k2- m2) > 0},对Z中的k2-m2,记η(‖u‖0)=min‖v‖0≤‖u‖0 mink,m∈N min1≤i≤n{k2-m2-γi(v)>0},这里‖·‖0记(L2(Ω))n.假设∫+∞1ξ(s)ds=∞, ∫+∞1η(s)ds=∞.在上述条件下,我们使用R.F.Manasevich的最大值最小值定理证明问题(*)的弱解u0∈(H1(Ω))n的存在性和唯一性.  相似文献   

10.
本文的主要结果是在研究循环图结构的基础上,探讨了循环图连通的充要条件,进而证明了连通的循环图都是Hamilton图的一般结论。凡文中没有定义的概念及未加证明的结论,均可在文章[1]中见到。定义1 如果(n,i-1)=1,2≤7≤[(n+1)/2],则公式 k(i—1)+i(mod n),k∈数集Z,称为标号公式.如果(n,i-1)=m>1,那么矩阵 R={1 1+i-1 … 1+k(i-1)… 2 2+i-1 … 2+k(i-1)……………………………… m m+i-1 … m+k(i-1)…}m×n/m (mod n)可以给2—度循环图G标号,使其邻接矩阵为循环矩阵。R称为图G的标号矩阵,其中k按mod n/m来计算。  相似文献   

11.
将顶点集和边集分别为V={vij┃i=1,2,…,m;j=0,1,…,n-1},E={v10v20,v20v30,…,vm0v10}U(Ui-1^m)ijvik┃j≠k,j,k=0,1,…,n-1}的图简记为Cm·Kn.利用图分解和色集置换的方法,给出了图Cm·Kn的邻强边色数。  相似文献   

12.
研究了以下一类拟线性分数阶高阶脉冲微分方程边值问题{Dq0+y(t)=A(t,y)y(t)+f(t,y(t),Φy(t),Ψy(t)),■t∈[0,1],q∈(n-1,n],y(i)(0)=0,Δy(i)|t=tk=0,1≤i≤n-2,k=1,2,…,p,Δy|t=tk=Ik(y(t k)),Δy(n-1)|t=tk=Jk(y(tk)),k=1,2,…,p,y(0)=y0+g(y),y(n-1)(1)=y1+∑m-2j=1bjy(n-1)(ξj)解的存在性。通过定义一个压缩映射并利用Banach不动点定理和Krasnoselskii's不动点定理,得到了边值问题存在唯一解和至少存在一个解的充分条件,最后分别给出一个例子来验证主要结果。  相似文献   

13.
利用反复迭代的思想方法,讨论了一类高阶变系数函数方程x(g(t))=p(t)x(t)+〖DD(〗m〖〗i=1〖DD)〗Q_i(t)〖DD(〗s〖〗j=1〖DD)〗〖JB(|〗x(gk_j+i(t))〖JB)|〗a_jsgnx(gk_j+i(t))解的振动性,给出了这类函数方程一切解振动的几个充分条件:如果存在整数n0,使得lim〖DD(X〗t〖DD)〗sup〖DD(〗m〖〗i=1〖DD)〗Qi(t)〖DD(〗s〖〗j=1〖DD)〗〖JB2*[〗〖DD(〗kj+i-1〖〗k=1〖DD)〗p(gk(t))〖JB2*]〗aj1〖KG1.5mm〗(t〖XC152HSW1.TIF;%85%85,JZ〗I),则上述方程的一切解振动;如果存在一个整数n0,使得lim〖DD(X〗t〖DD)〗sup〖JB2*[〗p(g(t))〖DD(〗m〖〗i=1〖DD)〗Qi(t)〖DD(〗s〖〗j=1〖DD)〗〖JB2*[〗〖DD(〗kj+i-2〖〗k=1〖DD)〗pn(gk(t))〖JB2*]〗j+〖DD(〗m〖〗i=1〖DD)〗Qi(g(t))〖DD(〗s〖〗j=1〖DD)〗〖JB2*[〗〖DD(〗kj+i〖〗k=2〖DD)〗pn(gk(t))〖JB2*]〗j〖JB2*]〗1〖KG1.5mm〗(t〖XC152HSW1.TIF;%85%85,JZ〗I),则上述方程的一切解也振动. 并且给出了该方程在差分方程中的若干应用.  相似文献   

14.
一个含有n个不同正整数的集合S={xt,…,xn}称为是gcd闭的,如果S中任两个整数的最大公因子也在S中,洪绍方在2002年猜想:对于给定的一个正整数t,存在一个仅由t决定的正整数k(t),使得当n≤k(t)时,定义在任意gcd闲集S={xt,…,xn}上的幂LCM矩阵([xi,xj]^t)是非奇异的;而当n≥k(t) 1,则存在一个gcd闭集S={xt,…,xn},使得定义在其上的幂LCM矩阵([xi,xj]^t)奇异,洪于1999年证明了k (1)=7,在本文中,作者证明了若t≥2,则有k(t)≥8.  相似文献   

15.
设In是集Xn={1,2,3,…,n}上的对称逆半群,且有向路为ρ={(1,2),(2,3),(3,4)…(n-1,n)},令Iρ={α∈In:任意x,y∈dom α,(x,y)∈ρ→(xα,yα)∈ρ}∪{Ф}.证明了Iρ是一个类A子半群,研究了Iρ的Green*-关系,进一步得到Iρ的*理想.  相似文献   

16.
 研究了高阶线性齐次微分方程
f (k)+Ak-1(z)Pk-1(e z)f +…+A1(z)P1(ez)f +A0(z)P0(ez)f=0
解的增长性,其中Aj(z)≠0(j=0,1,…,k-1)是整函数,Pj(ez)(j=0,1,…,k-1)是ez的非常数多项式,它们的常数项都为零,且次数不相等。证明了该微分方程的每一个非零解有无穷级。  相似文献   

17.
利用无限维3-李代数Aω={Lm|m∈Z}上所有满足h(0)+h(1)+1≠0的齐性Rota-Baxter算子R, 构造了齐性Rota-Baxter 3-李代数, 其中h:Z→F,R(Lm)=h(m)Lm,∠m∈Z,并对所构造的3-李代数进行了分类, 证明了存在5类不同构的齐性Rota-Baxter 3-李代数Ck,1≤k≤5.  相似文献   

18.
利用泛函分析方法证明差分方程xn 1=∑i∈Zk-{j,s,t}xn-i xrn-t xn-jxmn-s A∑i∈Zk-{j,s,t}xn-i xnm-s xn-jxnr-t A,n=0,1,…,其中k∈{2,3,…},j,s,t∈Zk≡{0,1,…,k}(s≠t,j{s,t}),A,r,m∈[0, ∞)且初始条件x-k,x-k 1,…,x0∈(0, ∞),和差分方程xn 1=∑i∈Zk-{j0,j1,…,js}xn-i xn-j0xn-j1…xn-js 1∑i∈Zk-{j0,j1,…,js-1}xn-i xn-j0xn-j1…xn-js-1,n=0,1,…,其中k∈{1,2,3,…},1≤s≤k,{j0,…,js}Zk(ji≠jl对i≠l)且初始条件x-k,x-k 1,…,x0∈(0, ∞)的唯一平衡点-x=1是全局渐近稳定的.该结果推广了文献[3~5,7]中相应的结果.  相似文献   

19.
设 n,q,s是正整数, 满足1≤s相似文献   

20.
设S是连通图G中的一个边子集。若G S不连通且它的每个连通分支的阶至少为k,则称S是G的一个k限制边割。图G的最小k限制边割的边数称为G的k限制边连通度,记为λκ(G)。定义ξκ(G)=min{|[X,X]|:|X|=k,G[X]连通},其中X=V(G)\X。若λk (G)=ξk(G),则称G是极大k限制边连通的。设G是一个围长至少为5的λ3 连通图。本文证明了若G中不存在5个点u1,u2,v1,v2,v3使得d(ui,vj)≥3(i=1,2;j=1,2,3),则G是极大3限制边连通的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号