首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对纯电动汽车坡道行驶过程中转矩不足的问题,基于模糊控制算法,提出一种以道路坡度、加速踏板变化率为输入,驱动转矩为输出的优化转矩控制策略.为了有效识别道路真实坡度,采用坡度识别算法进行道路真实坡度的识别.在Matlab/Simulink中建立车辆模型和控制算法模型进行了仿真分析,采用4%的坡道工况对车辆上坡加速性能进行仿真分析,对比了2种控制策略下的车速.结果表明:优化转矩控制策略能够更好地识别和响应驾驶意图;在优化转矩控制策略中,车速为0~50 km·h-1的上坡加速时间为10.65 s,比基准转矩控制策略降低了11.62%,车速为50~80 km·h-1的上坡加速时间为8.60 s,比基准转矩控制策略降低了14.85%;该策略能够有效提高车辆的上坡加速性能和经济性.  相似文献   

2.
为提高赛车在中低速下的加速能力,针对传统模糊控制依赖操作人员的经验、控制精度较低等缺点,提出一种基于自适应神经模糊推理系统的电动赛车加速驱动控制优化方法。该方法以当前加速踏板开度对应的最高车速为驾驶员期望车速,以驾驶员期望车速与实际车速的偏差及其变化率为输入变量,以加速踏板修正系数为输出变量,将加速踏板修正系数与当前加速踏板开度相乘得到修正后的加速踏板开度。Matlab/Simulink仿真与实车测试结果表明:在对加速踏板采用相同的操作控制下,优化后的驱动控制方法增加了赛车加速踏板的开度;在加速结束时刻,赛车车速的仿真值较优化前提高209%,实测值较优化前提高174%。  相似文献   

3.
为改善电动汽车驱动系统动力性和经济性,由电池组放电效率模型、驱动电机系统效率模型和电动汽车加速度模型,建立了综合目标函数.根据城市道路特征对综合目标函数动力性和经济性所占权重进行分配.分别以电机转矩-电机转速,电机转矩-加速踏板开度变化率为信号因子,驱动电机温度,电池组荷电状态为限值因子建立正交试验表,根据田口鲁棒控制动态特性信噪比对整车控制器输出转矩进行优化.根据GB/T 18386—2017电动汽车能量消耗率和续驶里程试验方法进行实车试验.试验结果表明行驶一个市区循环工况,相比于原车驱动控制策略,基于电机转矩-电机转速正交表的方法可节省能耗9%;基于电机转矩-加速踏板开度变化率正交表的方法可节省能耗4%.   相似文献   

4.
针对单电机驱动的电动方程式赛车,提出一种基于既定道路数据分析的转矩控制策略. 利用Optimum Lap 和Matlab/Simulink平台,分别搭建“道路模型”和“整车模型”,通过仿真获取“参考SOC”曲线. 采用线性稳定的基准转矩控制策略,通过模糊控制算法增加补偿转矩,以电机转速、加速踏板开度变化率作为模糊输入量来表达驾驶员加速意图. 同时,根据“参考SOC”和实际剩余电量差值大小评估耗电情况,并将模糊控制器划分为三种不同状态. 以自主研发的电动方程式赛车作为试验平台,通过试验验证了所提方法的有效性.  相似文献   

5.
分布式驱动电动汽车操纵性改善控制策略设计   总被引:2,自引:0,他引:2  
根据分布式电动汽车各轮驱动/制动转矩独立精确可控的特点,设计了一种改善车辆操纵性能的控制策略.根据不同车速下理想的助力特性曲线设计了差动助力转向控制策略以改善转向轻便性,根据优化的横摆角速度参考模型设计了转矩矢量分配控制策略以改善操纵灵敏性,最后利用纵向力分配算法将两者结合形成差动助力转向/转矩矢量分配联合控制策略.实车试验结果表明,操纵性改善控制策略在保证驾驶员路感信息的前提下明显减小了转向盘转矩,减小了转向盘转角,降低了驾驶员操纵负担.明显提高了整车横摆角速度响应,有效地抑制了车辆的加速不足转向特性,显著地改善了分布式驱动电动汽车的操纵性能.  相似文献   

6.
针对电控机械式自动变速器(AMT)在换挡过程中会出现动力中断的问题,提出一种双电机输入结构,在换挡时通过辅助电机进行驱动来弥补动力中断的不足.建立了传动系统模型,通过伯恩斯坦多项式来控制两个电机转矩的下降和上升,以协调两者之间的转矩控制.提出一种柔性换挡控制策略,通过车速和加速踏板开度识别复杂工况,根据驾驶员意图修正车速改变换挡时机,达到减少换挡次数的目的.Matlab/Simulink仿真结果表明:采用柔性换挡控制策略之后,在FTP72(美国城市驾驶循环工况)工况下可有效减少约50%的换挡次数;同时,经济性不会受到较大影响.  相似文献   

7.
为实现混合动力电动汽车纯电动模式与发动机工作模式平顺地切换,依据切换前后驱动转矩相等的原则,提出一种新的电机转矩算法.该算法根据CVT的速比控制规律、车速、节气门开度得出发动机的伪目标转速;根据发动机输出特性、节气门开度和伪发动机转速,得出发动机输出转矩,由此推导出电机输出转矩.仿真结果表明:模式切换前后整车驱动转矩基...  相似文献   

8.
针对四轮独立驱动轮毂电动机式电动汽车电动机失效后车辆存在的安全性问题,提出了一种新型电动机失效控制策略.首先,失效控制器检测每台电动机的失效因子,判断失效类型;其次,根据油门踏板开度和转向盘转角决定失效控制目标,迅速协调正常工作电动机的输出转矩,以满足车辆期望纵向力矩和横摆力矩的需求,保证车辆行驶的动力性和稳定性.利用Simulink软件搭建了7自由度轮毂电动机驱动车辆动力学模型,对提出的控制策略进行了仿真研究.结果表明:该算法能在油门踏板开度大且转向盘转角小时保证汽车的动力性需求;在油门踏板开度较小或转向盘转角过大时进行稳定性协调控制,改善了电动机失效后车辆的行驶稳定性.  相似文献   

9.
针对双轴驱动纯电动汽车的前后电机驱动转矩分配,基于电机的map特性,建立以双电机利用效率最大化为目标的优化模型,获得双驱动电动汽车不同转速与转矩需求下的双电机最优转矩分配模型.针对双轴驱动电动汽车,设计了普通、动力与经济3种驾驶驱动模式,并基于优化模型制定了3种驱动模式的转矩分配优化策略.最后以轻量化纯电动中巴为对象,建立了Carsim/Simulink联合仿真模型,分别以0~60 km/h加速实验验证动力性能,以NEDC工况的经济性验证效率.仿真结果表明,在3种驱动模式下,文中所提出的策略能小幅度缩短电动中巴的加速时间,将NEDC工况的续航里程分别提升2.20%、4.56%与6.60%,从而为双轴驱动电动汽车提供了一种双电机转矩优化分配的新方法.  相似文献   

10.
针对机电飞轮电动汽车工作模式复杂、能量管理困难等问题,提出了一种基于确定性规则的控制策略.该控制策略以车速、加速度、车辆需求转矩、电池荷电状态、飞轮能量状态为输入量,在满足车辆实际需求的前提下对电机、飞轮进行转矩分配.利用MATLAB/Simulink搭建整车模型,在NEDC工况下对机电飞轮电动汽车进行动力性和经济性仿真分析.仿真结果表明,整车百公里加速时间为11.8 s,最高车速为156.68 km/h,车速20 km/h时最大爬坡度为26%;在NEDC循环工况下其耗电量下降了0.89%,平均驱动效率提高了8.2%.该控制策略可以实现合理的转矩分配,能够保证机电飞轮电动汽车在动力性的基础上提高经济性.  相似文献   

11.
为了提升前后独立驱动四驱电动汽车的综合性能,提出了一种集成前后轴转矩分配和驱动防滑功能的协调控制策略(coordinated control strategy, CCS)。分别设计了基于经济性最优的前后轴转矩分配控制器和基于滑模控制理论的驱动防滑控制器。在此基础上,设计了集成两种控制器工作效能的协调控制策略。与已有集成控制策略不同,提出的策略不是将转矩分配与驱动防滑两种控制功能简单组合,而是在综合考虑车辆的安全性、经济性和动力性条件下进行合理且有效的集成。在常规工况下,车辆默认遵循经济性原则,同时控制器实时监测各车轮的滑移率。当路面条件恶化、无法满足经济性行驶时,在保证安全性的前提下,进行适当的转矩补偿,最大限度地利用路面附着条件,尽可能保障车辆的动力性不受影响。在MATLAB/CarSim环境下对提出的协调控制策略进行仿真验证的结果表明,在加速踏板开度分别为10%、30%、50%时,与传统集成控制策略(traditional integrated control strategy, TICS)相比,所提出的CCS使车辆的动力性能分别提升15.3%、35.6%、4.5%。  相似文献   

12.
针对电动汽车行驶工况及驾驶员操作具有一定非线性和时变不确定性的问题,对整车控制器的控制算法和电池管理系统进行了研究,提出了一种驱动转矩分配的双模糊控制策略。对纯电动汽车建立整车动力学模型和驾驶员输入参数模型,以基本转矩模糊控制器和补偿转矩模糊控制器来求解,并优化驱动转矩值,采用CAN总线通讯经过电机驱动器来控制驱动电机的转矩输出。以CYC_HWFET高速工况和CYC_EUDC中低速工况为例,基于ADVISOR平台对双模糊控制器的电动汽车进行性能仿真分析。结果表明,所设计的双模糊控制器在满足纯电动汽车动力性要求的同时,也能获得较优的经济性且动力电池利用效率较高。  相似文献   

13.
 汽车工业在推动经济发展,提高人民生活水平的同时,也带来了能源短缺、环境污染和气候变暖等问题。电动汽车作为新能源汽车,是解决能源危机和环境污染问题最有效的途径。电动汽车的性能与驱动系统密切相关,研制和开发适合电动汽车各种行驶工况的驱动系统已成为电动汽车领域研究的重要内容。本文结合汽车行驶平衡方程和电机机械特性方程建立了纯电动汽车(EV)驱动系统的数学模型,采用模糊PI控制策略对模型进行优化控制,并在Simulink环境下对模型进行仿真验证。仿真结果表明,该纯电动汽车驱动系统的数学模型,能够真实准确地反映车辆的运行状态,采用模糊PI控制策略能够较好地对驱动系统进行优化控制,使得仿真车速对需求车速具有良好的跟随性。该模型具有较强的鲁棒性,适用于纯电动汽车驱动系统的仿真。  相似文献   

14.
纯电动汽车电子加速踏板可靠性控制研究   总被引:1,自引:0,他引:1  
为确保加速踏板信号的可靠性,采用非接触式霍尔传感器作为电子加速踏板位置传感器,对踏板位置传感器信号提出一种改进的一阶低通滤波算法,进行2次滤波消除信号突变,并结合电动汽车电机驱动特性对加速踏板位置传感器信号进行故障诊断.通过建立踏板信号控制模型仿真,测试了整个控制过程的可靠性.结果表明,踏板信号出现毛刺及过高、过低或同步误差较大等异常时能准确判断出各种故障状态,该控制方式可满足纯电动汽车电子加速踏板可靠性控制的要求.  相似文献   

15.
为提高后轮独立驱动电动汽车的横摆稳定性,提出以车辆的横摆角速度和质心侧偏角为控制变量,以驱动轮的驱动力为执行力,包括横摆力矩决策层和转矩分配层两部分的直接横摆力矩控制策略。其中控制策略的上层运用滑模控制理论,下层采用优化控制理论,既能保证非线性系统的控制精度,也能保证其响应速度。运用车辆系统动力学建立了包括线性车辆参考模型和非线性车辆计算模型的简化车辆动力学模型,搭建了Matlab/Simulink-Carsim联合仿真平台,利用蛇形试验工况和双移线试验工况对该文提出的控制策略进行了仿真验证。最后,利用AD5435半实物仿真平台搭建了纯电动汽车硬件在环试验平台,验证了该文控制策略的控制效果。结果表明,所提出的控制策略能够保证车辆横摆稳定性,同时避免了以制动力作为横摆力矩执行力时因纵向车速降低带来的行驶安全性问题。  相似文献   

16.
纯电动汽车动力性能分析与计算   总被引:1,自引:0,他引:1  
对纯电动汽车车载电动机的动力特性进行了研究分析。建立了纯电动汽车动力性能计算模型,并在MATLAB平台下开发了纯电动汽车动力性能仿真软件系统。基于此软件系统选取三款不同动力特性的车载电动机与三组变速箱组合进行了仿真测试,对车载电动机额定转矩、额定功率和最高转速对汽车最高车速、爬坡性能以及加速性能的影响进行了归纳总结。首次以方程形式建立了准确的纯电动汽车动力性能计算模型。  相似文献   

17.
为了解决电动汽车在加速和制动过程中容易发生滑移和抖动、不能满足稳定性和舒适性的要求,提出了一种基于主从式非线性模型预测(nonlinear model prediction,NMP)直接转矩控制(direct torque controt,DTC)的电动汽车鲁棒控制策略。采用双电机-单控制器主从式驱动模型,基于模糊逻辑控制器,在线确定权重因子的精确值,生成优化电动汽车驱动决策的最优切换状态,保证电机速度的精确跟踪。结合NMP-DTC电机控制方法,设计了一种模糊逻辑ASR/ABS控制器,以角加速度变化和滑移率变化为输入,以补偿转矩为输出变量,根据道路特性的变化提供补偿转矩,保证电动汽车行驶在最佳滑移率范围内,提高行驶的稳定性。基于MATLAB/Simulink进行变负载转矩电机跟踪和汽车纵向稳定性仿真,与参考速度进行对比分析。结果表明,所提出的主从式NMP-DTC的电动汽车ASR/ABS控制,在变负载下不仅电机跟踪轨迹误差降低,而且可保证在加速和制动过程中车辆的纵向稳定性控制。  相似文献   

18.
基于动态规划的电动汽车加速过程优化控制   总被引:1,自引:0,他引:1  
为提高纯电动汽车能量利用效率,针对电动汽车加速过程,提出了基于动态规划算法的优化控制策略.建立了基于效率图的电机及驱动系统模型和锂离子动力电池组美国新一代汽车合作伙伴计划(PNGV)等效模型,以及整车能源和动力系统的效率模型;构建了整车动力性和经济性的多目标价值函数,采用动态规划算法获得加速过程中优化的电机控制指令路径.基于Matlab平台对城市通勤电动汽车(ECUV)车型进行仿真,结果显示,百公里加速时经济性最优的加速路径能耗降低了22.42%,说明优化的路径能有效提高整车效率减少能量损耗,优化方法可行.  相似文献   

19.
对某款四轮独立驱动电动汽车转矩分配控制策略对车辆经济性影响进行研究,基于理论与试验数据,建立关键零部件数学模型及整车能耗的MATLAB/Simulink仿真计算模型.以降低系统能耗为目标,提出一种基于驱传动系统效率优化的转矩分配控制策略,得到转矩分配系数MAP图,从而避免了在线计算的时效性问题.不同行驶工况下的仿真结果表明,与固定比例的转矩分配方法相比,基于转矩分配优化算法的系统能耗可降低约5%.  相似文献   

20.
为解决电动汽车动力不足和行驶里程短的问题,提出了一种基于遗传算法的电动汽车三档线控自动变速器综合换档优化方法。在分析了加速性能最优的动力性换档方法和电机效率最优的经济性换档方法的基础上,把加速度变化率和能量消耗变化率分别作为动力性和经济性评价函数,利用遗传算法建立换档优化模型,通过反复迭代优化得到电动汽车三档线控自动变速器综合换档方法曲线,并从加速度变化率和电机功率偏移率两个方面分别对优化前后的动力性和经济性进行对比分析。结果表明:优化后换档过程(一档升二档、二档升三档)的动力性能分别平均提高了4.96%和14.23%;加速踏板开度在70%以下时经济性能分别平均提高了10.61%和2.54%,但当加速踏板开度大于70%时电机功率均达到峰值则无法体现优化效果。可见,经过遗传算法优化后的综合换档方法能有效地提升整车动力性并增加行驶里程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号