首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
De Pontieu B  Erdélyi R  James SP 《Nature》2004,430(6999):536-539
Spicules are dynamic jets propelled upwards (at speeds of approximately 20 km s(-1)) from the solar 'surface' (photosphere) into the magnetized low atmosphere of the Sun. They carry a mass flux of 100 times that of the solar wind into the low solar corona. With diameters close to observational limits (< 500 km), spicules have been largely unexplained since their discovery in 1877: none of the existing models can account simultaneously for their ubiquity, evolution, energetics and recently discovered periodicity. Here we report a synthesis of modelling and high-spatial-resolution observations in which numerical simulations driven by observed photospheric velocities directly reproduce the observed occurrence and properties of individual spicules. Photospheric velocities are dominated by convective granulation (which has been considered before for spicule formation) and by p-modes (which are solar global resonant acoustic oscillations visible in the photosphere as quasi-sinusoidal velocity and intensity pulsations). We show that the previously ignored p-modes are crucial: on inclined magnetic flux tubes, the p-modes leak sufficient energy from the global resonant cavity into the chromosphere to power shocks that drive upward flows and form spicules.  相似文献   

3.
Energy is required to heat the outer solar atmosphere to millions of degrees (refs 1, 2) and to accelerate the solar wind to hundreds of kilometres per second (refs 2-6). Alfvén waves (travelling oscillations of ions and magnetic field) have been invoked as a possible mechanism to transport magneto-convective energy upwards along the Sun's magnetic field lines into the corona. Previous observations of Alfvénic waves in the corona revealed amplitudes far too small (0.5?km?s(-1)) to supply the energy flux (100-200?W?m(-2)) required to drive the fast solar wind or balance the radiative losses of the quiet corona. Here we report observations of the transition region (between the chromosphere and the corona) and of the corona that reveal how Alfvénic motions permeate the dynamic and finely structured outer solar atmosphere. The ubiquitous outward-propagating Alfvénic motions observed have amplitudes of the order of 20?km?s(-1) and periods of the order of 100-500?s throughout the quiescent atmosphere (compatible with recent investigations), and are energetic enough to accelerate the fast solar wind and heat the quiet corona.  相似文献   

4.
Bueno JT  Shchukina N  Ramos AA 《Nature》2004,430(6997):326-329
Deciphering and understanding the small-scale magnetic activity of the quiet solar photosphere should help to solve many of the key problems of solar and stellar physics, such as the magnetic coupling to the outer atmosphere and the coronal heating. At present, we can see only approximately 1 per cent of the complex magnetism of the quiet Sun, which highlights the need to develop a reliable way to investigate the remaining 99 per cent. Here we report three-dimensional radiative transfer modelling of scattering polarization in atomic and molecular lines that indicates the presence of hidden, mixed-polarity fields on subresolution scales. Combining this modelling with recent observational data, we find a ubiquitous tangled magnetic field with an average strength of approximately 130 G, which is much stronger in the intergranular regions of solar surface convection than in the granular regions. So the average magnetic energy density in the quiet solar photosphere is at least two orders of magnitude greater than that derived from simplistic one-dimensional investigations, and sufficient to balance radiative energy losses from the solar chromosphere.  相似文献   

5.
太阳光球磁场的动态演化在太阳爆发事件中起着重要作用。电流螺度、感应电场和坡印廷能流是表征磁场非势特性的典型参量。以活动区NOAA10488为例,利用局部相关跟踪方法,依据观测资料计算这3个参量,考察太阳光球磁场运动对于非势磁能的传输、释放作用。分析这个活动区的电流螺度、感应电场以及能流的分布,发现电流螺度和能流的分布情况均与太阳高层大气耀斑爆发密切相关,而感应电场的分布与其爆发的关系尚待进一步研究。  相似文献   

6.
Solanki SK  Lagg A  Woch J  Krupp N  Collados M 《Nature》2003,425(6959):692-695
Flares and X-ray jets on the Sun arise in active regions where magnetic flux emerges from the solar interior amd interacts with the ambient magnetic field. The interactions are believed to occur in electric current sheets separating regions of opposite magnetic polarity. The current sheets located in the corona or upper chromosphere have long been thought to act as an important source of coronal heating, requiring their location in the corona or upper chromosphere. The dynamics and energetics of these sheets are governed by a complex magnetic field structure that, until now, has been difficult to measure. Here we report the determination of the full magnetic vector in an interaction region near the base of the solar corona. The observations reveal two magnetic features that characterize young active regions on the Sun: a set of rising magnetic loops and a tangential discontinuity of the magnetic field direction, the latter being the observational signature of an electric current sheet. This provides strong support for coronal heating models based on the dissipation of magnetic energy at current sheets.  相似文献   

7.
Genda H  Abe Y 《Nature》2005,433(7028):842-844
The atmospheric compositions of Venus and Earth differ significantly, with the venusian atmosphere containing about 50 times as much 36Ar as the atmosphere on Earth. The different effects of the solar wind on planet-forming materials for Earth and Venus have been proposed to account for some of this difference in atmospheric composition, but the cause of the compositional difference has not yet been fully resolved. Here we propose that the absence or presence of an ocean at the surface of a protoplanet during the giant impact phase could have determined its subsequent atmospheric amount and composition. Using numerical simulations, we demonstrate that the presence of an ocean significantly enhances the loss of atmosphere during a giant impact owing to two effects: evaporation of the ocean, and lower shock impedance of the ocean compared to the ground. Protoplanets near Earth's orbit are expected to have had oceans, whereas those near Venus' orbit are not, and we therefore suggest that remnants of the noble-gas rich proto-atmosphere survived on Venus, but not on Earth. Our proposed mechanism explains differences in the atmospheric contents of argon, krypton and xenon on Venus and Earth, but most of the neon must have escaped from both planets' atmospheres later to yield the observed ratio of neon to argon.  相似文献   

8.
An influence of solar spectral variations on radiative forcing of climate   总被引:3,自引:0,他引:3  
Haigh JD  Winning AR  Toumi R  Harder JW 《Nature》2010,467(7316):696-699
The thermal structure and composition of the atmosphere is determined fundamentally by the incoming solar irradiance. Radiation at ultraviolet wavelengths dissociates atmospheric molecules, initiating chains of chemical reactions-specifically those producing stratospheric ozone-and providing the major source of heating for the middle atmosphere, while radiation at visible and near-infrared wavelengths mainly reaches and warms the lower atmosphere and the Earth's surface. Thus the spectral composition of solar radiation is crucial in determining atmospheric structure, as well as surface temperature, and it follows that the response of the atmosphere to variations in solar irradiance depends on the spectrum. Daily measurements of the solar spectrum between 0.2?μm and 2.4?μm, made by the Spectral Irradiance Monitor (SIM) instrument on the Solar Radiation and Climate Experiment (SORCE) satellite since April 2004, have revealed that over this declining phase of the solar cycle there was a four to six times larger decline in ultraviolet than would have been predicted on the basis of our previous understanding. This reduction was partially compensated in the total solar output by an increase in radiation at visible wavelengths. Here we show that these spectral changes appear to have led to a significant decline from 2004 to 2007 in stratospheric ozone below an altitude of 45?km, with an increase above this altitude. Our results, simulated with a radiative-photochemical model, are consistent with contemporaneous measurements of ozone from the Aura-MLS satellite, although the short time period makes precise attribution to solar effects difficult. We also show, using the SIM data, that solar radiative forcing of surface climate is out of phase with solar activity. Currently there is insufficient observational evidence to validate the spectral variations observed by SIM, or to fully characterize other solar cycles, but our findings raise the possibility that the effects of solar variability on temperature throughout the atmosphere may be contrary to current expectations.  相似文献   

9.
The concentration of radiocarbon, 14C, in the atmosphere depends on its production rate by cosmic rays, and on the intensity of carbon exchange between the atmosphere and other reservoirs, for example the deep oceans. For the Holocene (the past approximately 11,500 years), it has been shown that fluctuations in atmospheric radiocarbon concentrations have been caused mostly by variations in the solar magnetic field. Recent progress in extending the radiocarbon record backwards in time has indicated especially high atmospheric radiocarbon concentrations in the Younger Dryas cold period, between 12,700 and 11,500 years before the present. These high concentrations have been interpreted as a result of a reduced exchange with the deep-ocean reservoir, caused by a drastic weakening of the deep-ocean ventilation. Here we present a high-resolution reconstruction of atmospheric radiocarbon concentrations, derived from annually laminated sediments of two Polish lakes, Lake Gosciaz and Lake Perespilno. These records indicate that the maximum in atmospheric radiocarbon concentrations in the early Younger Dryas was smaller than previously believed, and might have been caused by variations in solar activity. If so, there is no indication that the deep-ocean ventilation in the Younger Dryas was significantly different from today's.  相似文献   

10.
在1997 年3 月9 日日全食时, 我们于黑龙江省漠河市( 西林吉) 作了一系列日冕的照相观测不同感光的日冕像上显示出赤道东西的宽冕流、两极区冕洞、极羽和20 多条极射线等结构特征本文综合一些日冕像的形态结构和亮度测量结果,给出日冕的形态结构图、等亮度图、两极区和赤道区东西的亮度分布图  相似文献   

11.
We have examined the Wind data in 1996 and identified 21 small interplanetary magnetic flux ropes(SIMFRs),and all the 21 SIMFRs have boundary layer structures.The durations of the boundary layers varied from several minutes to 30 minutes.These boundary layers also have properties of high proton temperature,density,and plasma beta.These boundary layers are formed by magnetic reconnections.In addition,in three events magnetic reconnections were occurring inside the boundary layers.It indicates that the flux rope structures have propagated for some period of time,and their boundaries were still evolving through interaction with the background solar wind.Namely it is very possible that the SIMFRs came from the solar corona.  相似文献   

12.
Hessler AM  Lowe DR  Jones RL  Bird DK 《Nature》2004,428(6984):736-738
The quantification of greenhouse gases present in the Archaean atmosphere is critical for understanding the evolution of atmospheric oxygen, surface temperatures and the conditions for life on early Earth. For instance, it has been argued that small changes in the balance between two potential greenhouse gases, carbon dioxide and methane, may have dictated the feedback cycle involving organic haze production and global cooling. Climate models have focused on carbon dioxide as the greenhouse gas responsible for maintaining above-freezing surface temperatures during a time of low solar luminosity. However, the analysis of 2.75-billion-year (Gyr)-old palaeosols--soil samples preserved in the geologic record--have recently provided an upper constraint on atmospheric carbon dioxide levels well below that required in most climate models to prevent the Earth's surface from freezing. This finding prompted many to look towards methane as an additional greenhouse gas to satisfy climate models. Here we use model equilibrium reactions for weathering rinds on 3.2-Gyr-old river gravels to show that the presence of iron-rich carbonate relative to common clay minerals requires a minimum partial pressure of carbon dioxide several times higher than present-day values. Unless actual carbon dioxide levels were considerably greater than this, climate models predict that additional greenhouse gases would still need to have a role in maintaining above-freezing surface temperatures.  相似文献   

13.
Kuhn JR  Armstrong JD  Bush RI  Scherrer P 《Nature》2000,405(6786):544-546
It is a long-standing puzzle that the Sun's photosphere--its visible surface--rotates differentially, with the equatorial regions rotating faster than the poles. It has been suggested that waves analogous to terrestrial Rossby waves, and known as r-mode oscillations, could explain the Sun's differential rotation: Rossby waves are seen in the oceans as large-scale (hundreds of kilometres) variations of sea-surface height (5-cm-high waves), which propagate slowly either east or west (they could take tens of years to cross the Pacific Ocean). Calculations show that the solar r-mode oscillations have properties that should be strongly constrained by differential rotation. Here we report the detection of 100-m-high 'hills' in the photosphere, spaced uniformly over the Sun's surface with a spacing of (8.7 +/- 0.6) x 10(4) km. If convection under the photosphere is organized by the r-modes, the observed corrugated photosphere is a probable surface manifestation of these solar oscillations.  相似文献   

14.
Direct observations over the past four centuries show that the number of sunspots observed on the Sun's surface varies periodically, going through successive maxima and minima. Following sunspot cycle 23, the Sun went into a prolonged minimum characterized by a very weak polar magnetic field and an unusually large number of days without sunspots. Sunspots are strongly magnetized regions generated by a dynamo mechanism that recreates the solar polar field mediated through plasma flows. Here we report results from kinematic dynamo simulations which demonstrate that a fast meridional flow in the first half of a cycle, followed by a slower flow in the second half, reproduces both characteristics of the minimum of sunspot cycle 23. Our model predicts that, in general, very deep minima are associated with weak polar fields. Sunspots govern the solar radiative energy and radio flux, and, in conjunction with the polar field, modulate the solar wind, the heliospheric open flux and, consequently, the cosmic ray flux at Earth.  相似文献   

15.
南极瑞穗站辐射特征的初步研究   总被引:1,自引:0,他引:1  
本文利用1979-1980年在南极瑞穗太阳分光辐射分量和长波辐射通量及微气象观测资料,计算并分析了辐射分量,地表反射率,地表和大气的有效比辐射率,大气的有效透过率和雪面反射率与太阳高度角的关系及他们的日,年变化,并对输出输入长波辐射的实测与计算值进行了比较,初步结果表明:在南极瑞穗站净辐射年平均值为-14.6W/m^2,在波长305-2800nm,305-695nm,和695-2800nm范围内地表反射率分别为0.79,0.95,和0.64,地表和大气有效比辐射率的年平均值分别为0.99和0.77,大气的有效透过率在不同的波长范围内有不同值,代表春,夏,秋季的10月19日,12月28日和3月3日,在305-2800nm波长范围内,晴天大气透过率分别为0.828,0.871和9.835。  相似文献   

16.
Solar corona is the outermost part of the solar atmosphere. Coronal activities influence space environment between the Sun and the Earth, space weather and the Earth itself. The total solar eclipse (TSE) is the best opportunity to observe the solar corona on ground. During the TSE 2008, a series of images of the corona and partial eclipse of solar disk were obtained using telescope and CCD camera. After image processing, preliminary results of coronal structure are given, and radial brightness profiles of the corona in directions of pole and equator of the Sun are measured. Though in solar activity minimum, the shape and structure of the corona are not symmetry. The equatorial regions are more extent than the polar one, and there are also larger differences between the east and west equatorial regions and between the south and north polar regions. Coronal streamers on east side of the equator, particularly the largest one in east-south direction, are very obvious. The coronal plume in south polar region consists of more polar rays than that in north polar region. These structures are also shown in other observations and data of SOHO. The radial brightness profiles in directions of pole and equator are similar to those of the Van de Hulst model in solar minimum, but there are a few differences due to coronal activity, which is shown in the isophote map of the corona.  相似文献   

17.
Some characteristics of the atmosphere during an adiabatic process   总被引:1,自引:0,他引:1  
Some important characteristics of the atmosphere during an adiabatic process are investigated, which include the invariability of atmospheric entropy range and local surface potential temperature, the conservation of the atmospheric mass intervened between any isentropic surface and the ground, and the isentropic surface intersecting with the ground. The analysis shows that the atmospheric reference state (ARS) for investigation on available potential energy (APE) should be defined objectively as the state which could be approached from the existing atmosphere by adiabatic adjustment, and be related to initial atmospheric state before adjustment. For the initial atmosphere state at any time, its corresponding ARS is different from the one at another time. Based on the above-mentioned conclusions, the reference state proposed by Lorenz cannot be obtained physically, so a new conception, the conditional minimum total potential energy, is put forward in order to objectively investigate atmospheric APE.  相似文献   

18.
从20世纪90年代开始,太阳光球电流螺度研究已经取得了重大进展.大样本的统计结果揭示了电流螺度分布的一个重要趋势:太阳表面的活动区,在北半球的螺度符号主要为负值,在南半球的螺度符号主要为正值.虽然不同仪器观测的矢量磁场计算得到的电流螺度符号具有基本的一致性,但它们之间还存在着一些差异.本文中,利用不同矢量磁像仪观测的矢量磁场数据,我们分析了电流螺度随磁场强度的变化,探讨了不同仪器之间差异的原因.我们将纵向磁场和总磁场按强度划分成6个区间,计算了每个区间内电流螺度密度的平均值h_c.统计结果显示:当纵向磁场小于600 G时,由不同仪器数据计算的h_c具有很好的一致性,并且遵守螺度半球符号法则;当纵向磁场大于600 G时,不同仪器之间的差异增大,并且在有的磁场区间内,电流螺度不遵守半球螺度符号法则;南半球的电流螺度更好地符合半球螺度符号法则.电流螺度随总磁场的变化趋势与纵场的相似.利用同样的方法,对个别活动区进行研究,分析磁光效应对电流螺度的影响.通过上述分析,我们得出当纵向磁场小于600 G时,计算得到的电流螺度基本可信.当纵向磁场大于600 G时,造成不同仪器之间差异的真实原因需进一步研究.  相似文献   

19.
Atmospheric carbon dioxide concentrations before 2.2 billion years ago   总被引:5,自引:0,他引:5  
Rye R  Kuo PH  Holland HD 《Nature》1995,378(6557):603-605
The composition of the Earth's early atmosphere is a subject of continuing debate. In particular, it has been suggested that elevated concentrations of atmospheric carbon dioxide would have been necessary to maintain normal surface temperatures in the face of lower solar luminosity in early Earth history. Fossil weathering profiles, known as palaeosols, have provided semi-quantitative constraints on atmospheric oxygen partial pressure (pO2) before 2.2 Gyr ago. Here we use the same well studied palaeosols to constrain atmospheric pCO2 between 2.75 and 2.2 Gyr ago. The observation that iron lost from the tops of these profiles was reprecipitated lower down as iron silicate minerals, rather than as iron carbonate, indicates that atmospheric pCO2 must have been less than 10(-1.4) atm--about 100 times today's level of 360 p.p.m., and at least five times lower than that required in one-dimensional climate models to compensate for lower solar luminosity at 2.75 Gyr. Our results suggest that either the Earth's early climate was much more sensitive to increases in pCO2 than has been thought, or that one or more greenhouse gases other than CO2 contributed significantly to the atmosphere's radiative balance during the late Archaean and early Proterozoic eons.  相似文献   

20.
A range of analysis approaches,namely continuous wavelet,cross wavelet,and wavelet coherence analyses,are employed to clarify the phase relationship between the smoothed monthly mean sunspot number and solar 10.7 cm flux(F10.7).Analysis shows that there is a region of high spectral power sitting across the Schwabe cycle belt,where the two time series are in phase.However,analysis of the cross-wavelet transform and wavelet coherence unveils asynchronous behavior featured with phase mixing in the high-frequency components of sunspot activity and solar F10.7,which may explain the different activity properties of the photosphere and corona on a short time scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号