首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
针对合成孔径雷达(synthetic aperture radar, SAR)图像小目标舰船检测中存在的检测率较低、虚警较高等缺点,提出了用于SAR图像小目标舰船检测的改进单步多框检测(single shot multibox detector,SSD)算法。首先,制作了一个专门用于SAR图像小目标舰船检测的数据集,在SSD目标检测算法的基础上,提出了迁移学习、浅层特征增强和数据增广3个方面的改进;利用性能更好的ResNet50作为特征提取结构,在浅层特征增强网络结构中采用了inception模块的分支结构,同时使用了空洞卷积扩大特征图的视觉感受野,增强了网络对小尺寸舰船目标的适应性;最后在数据集上进行了多组对比分析实验,实验结果表明所提方法相比于原始的SSD,平均准确率提高了5.4%,并且对SAR小目标舰船的漏检和误报明显减少。  相似文献   

2.
针对合成孔径雷达(synthetic aperture radar, SAR)图像船舶目标尺度不一且易受海面、地面杂波和相干斑噪声的影响,难以提取目标多维特征且特征融合过程中易产生语义歧义,造成船舶目标检测率低,虚警率高的问题,提出一个基于全局位置信息和残差特征融合的SAR船舶目标检测算法。基于Faster区域卷积神经网络(region convolutional neural network, R-CNN)目标检测算法,在特征提取网络和特征融合网络中进行改进:在特征提取网络中使用高宽注意力机制提取目标在图像中的全局位置信息,增强目标的多维特征提取能力;在特征融合网络中使用带有残差连接的双向特征金字塔网络削弱特征融合过程中的语义歧义,降低复杂背景下的船舶目标虚警率,同时进行不同层级的多尺度特征双向融合,增强高低层特征的联系,提升多尺度船舶目标的检测能力。在SAR船舶数据集上达到98.2%的均值平均精度,超过部分算法2.4%以上。实验表明,所提算法有效提取了目标的多维特征,显著缓解了语义歧义问题,具有较好的检测能力和泛化能力。  相似文献   

3.
面向合成孔径雷达(synthetic aperture radar, SAR)多目标检测应用, 提出了一种基于YOLO (you only look once) 框架的无锚框SAR图像舰船目标检测方法。该方法针对YOLOv3锚框需要预先设定且无法完美契合的弊端, 通过采用无锚框方法更好适应所检测目标的大小, 便于多尺度目标使用。在此基础上, 给CSPDarknet53网络增加了注意力机制作为特征提取网络, 然后经过能够增大感受野的改进特征金字塔网络(feature pyramid network, FPN)后, 把特征图传给无锚框检测头, 有效提升了目标类别和位置的预测精度。实验证明, 所提算法在公开SAR舰船数据集上平均精度比YOLOv3提高3.8%,达到了94.8%, 虚警率降低4.8%。  相似文献   

4.
针对光学遥感图像中近岸舰船目标检测干扰大、虚警率高的问题, 在基于包围框边缘感知向量(box boundary-aware vectors, BBAVectors)检测网络的基础上提出了改进方法。首先在特征融合网络后加入一个有监督的注意力模块来增强目标区域信息, 削弱无关背景信息干扰; 然后利用边界感知向量间的几何关系设计了一个自监督损失函数, 用以加强向量间的耦合关系, 防止向量独立性导致包围框出现不规则形状。实验结果显示, 在HRSC2016数据集L2级检测任务中, 改进模型检测结果的平均精度相较于原网络提高了6.91%, 有效抑制了背景噪声的干扰, 降低了近岸舰船目标检测的虚警率, 证明了改进方法的有效性。  相似文献   

5.
针对传统雷达图像目标检测方法在海杂波及多种干扰物组成的复杂背景下目标分类识别率低、虚警率高的问题,提出将当前热点研究的深度学习方法引入到雷达图像目标检测。首先分析了目前先进的YOLOv3检测算法优点及应用到雷达图像领域的局限,并构建了海杂波环境下有干扰物的舰船目标检测数据集,数据集包含了不同背景、分辨率、目标物位置关系等条件,能够较完备地满足实际任务需要。针对该数据集包含目标稀疏、目标尺寸小的特点,首先利用K means算法计算适合该数据集的锚点坐标;其次在YOLOv3的基础上提出改进多尺度特征融合预测算法,融合了多层特征信息并加入空间金字塔池化。通过大量对比实验,在该数据集上,所提方法相比原YOLOv3检测精度提高了6.07%。  相似文献   

6.
针对合成孔径雷达图像目标检测易受噪声和背景干扰影响,以及多尺度条件下检测性能下降的问题,在兼顾网络规模和检测精度的基础上,提出了一种改进的合成孔径雷达舰船目标检测算法。使用坐标注意力机制,在确保轻量化的同时抑制了噪声与干扰,以提高网络的特征提取能力;融入加权双向特征金字塔结构以实现多尺度特征融合,设计了一种新的预测框损失函数以改善检测精度,同时加快算法收敛,从而实现了对合成孔径雷达图像舰船目标的快速准确识别。实验验证表明,所提算法在合成孔径雷达舰船检测数据集(synthetic aperture radar ship detection dataset, SSDD)上的平均精度均值达到96.7%,相比于YOLOv5s提高1.9%,训练时收敛速度更快,且保持了网络轻量化的特点,在实际应用中具有良好前景。  相似文献   

7.
针对传统合成孔径雷达(synthetic aperture radar,SAR)图像舰船目标检测算法检测精度易受斑点噪声影响,且只能提取底层特征及其泛化性较差的问题,提出了一种基于深度卷积神经网络的SAR图像舰船目标检测算法。首先将目前先进的单次多盒检测器(single shot multibox detector,SSD)检测算法应用到SAR图像舰船目标检测领域,指出了其在该领域存在的局限性,在此基础上提出了基于SSD的新的检测方法,包括融合上下文信息,迁移模型学习,在公开的SSDD数据集上进行了训练和测试,对实验结果进行了对比分析,实验结果表明,相比于原始的SSD检测算法,所提出的方法不仅提高了目标检测精度,同时也保证了算法的检测效率。  相似文献   

8.
基于卷积神经网络的小型建筑物检测算法   总被引:1,自引:0,他引:1  
针对基于传统卷积神经网络的建筑物目标检测算法对于小型建筑物检测准确率低的问题, 提出一种基于Mask-区域卷积神经网络(Mask-region convoluional neural networks, Mask-RCNN)模型的小目标检测算法模型。该模型对Mask-RCNN模型中的特征提取网络进行了改进, 设计了一种带有注意力机制的多尺度组卷积神经网络, 有效解决了小目标有用特征较少且易被背景特征和噪声干扰的问题。航拍图像实验结果表明, 改进的检测模型使小型建筑物目标检测准确率较原始Mask-RCNN模型提升了28.9%, 达到了0.663。并且整体检测准确率达到了0.843, 有效提升了航拍建筑物检测准确性。  相似文献   

9.
传统合成孔径雷达(synthetic aperture radar, SAR)图像目标检测的方法依赖于人工设计特征且易受复杂背景干扰, 泛化能力较差。深度学习的方法可以自动提取特征且具有良好的抗干扰特性, 对于未来雷达智能感知具有重要意义。不同于其他只能对固定区域进行检测的常规卷积神经网络, 本文提出一种改进型YOLOv3的SAR图像舰船目标检测方法, 该方法基于舰船尺寸与形状自适应采样的可变形卷积、ResNet50变体特征提取器和ShuffleNetv2轻量化思想等设计YOLOv3模型。通过SSDD数据集验证, 在检测效果方面, 相较于原YOLOv3模型, 平均精度从93.21%提高至96.94%, 检测概率从95.51%提高至97.75%;在模型大小方面, 轻量化设计模型仅为原YOLOv3模型的八分之一, 可实现嵌入式的使用。  相似文献   

10.
基于卷积神经网络的SAR图像舰船目标检测   总被引:1,自引:0,他引:1  
近年来,深度学习在物体检测领域取得了非常大的突破,但是鲜有用于合成孔径雷达(synthetic aperture radar, SAR)图像中舰船目标检测,论文将基于深度学习的目标检测方法引入到了SAR图像舰船目标检测。首先分析了目前先进的Faster R-CNN检测算法优点及其在SAR图像舰船检测领域的局限。在此基础上,构建了一个新的SAR图像舰船目标检测数据集SSDD,数据集包含不同分辨率、尺寸、海况、传感器类型等条件下的舰船SAR图像,它可以作为本领域研究人员评价其算法的基准。提出了SAR图像舰船目标检测的新方法,包括特征聚合、迁移学习、损失函数设计和其他应用细节,并在数据集上进行了大量的对比实验。实验结果证明提出的方法可以有更高的检测准确率和更快的检测速度。  相似文献   

11.
高分辨率SAR与光学图像中目标融合检测方法   总被引:3,自引:0,他引:3  
提出了一种基于特征融合的军事目标检测方法,充分考虑了SAR与光学图像中目标的互补性特征。目标在高分辨率SAR图像中会产生强后向散射回波(radar cross sections,RCS),因此可以快速检测出感兴趣目标。但受相干斑和人造杂波影响,检测结果存在大量虚警。相比而言,从光学图像中提取出的目标形状信息更有利于鉴别虚假。因此,本方法在串行融合结构中结合SAR和光学图像中提取出的目标特征进行融合鉴别,有效去除虚警。实验用机载测试图像对本文方法的性能进行了验证和分析。  相似文献   

12.
特征提取是极化合成孔径雷达图像处理的一个重要问题,也是海上目标检测的关键。相似性参数和极化熵可以表征目标的电磁散射特性。为了增强目标与背景的对比,提出了一种基于特征融合的新参数。这种参数可表达区域的差异性,处理后目标与背景的对比更加明显。研究了该参量在海杂波区域的分布模型,进而提出了一种新的海上船只检测方法,该方法可用于多视情况下的舰船检测。最后用机载合成孔径雷达(airborne synthetic aperture radar, AirSAR) 数据验证了该方法的有效性。  相似文献   

13.
为进一步提升对可见光图像中水面舰船目标的检测识别成功率,提出一种基于YOLOv5的舰船目标识别算法。使用基于随机池化方法的空间金字塔池化网络,运用双向特征金字塔网络进行多尺度特征融合,采用指数线性单元函数作为激活函数加快网络训练收敛速度,提升算法鲁棒性,从而实现了对水面舰船目标和舰船关键部位的快速准确识别。通过在舰船目标及其关键部位数据集上实验验证,对比多个经典目标检测方法,在识别准确率上均有不同程度提升,对比原YOLOv5s模型,平均精度均值提升3.03%,速度提升2 FPS,模型保持了YOLOv5轻量化的特点,在应用部署上有良好前景。  相似文献   

14.
针对扩展分形(EF)特征检测SAR目标虚警率高的不足,提出了基于方向性粗糙度特征(Directional Roughness Feature,DRF)对SAR图像目标检测的算法。该算法用指数小波在一个尺度和任意一个方向θ(0 0<θ<900)上对SAR图像滤波,对滤波后图像应用能量关系函数求各像素点的DRF进行目标检测。针对X波段和Ka波段的SAR图像,确定了用该算法检测目标的最优参数。分别用该算法和EF特征方法对不同波段SAR图像进行目标检测,结果表明该算法具有检测虚警率低和目标空间可分辨性高的优点。  相似文献   

15.
1. INTRODUCTION Many researches have been made on automatic target recognition (ATR) from SAR images in the past few years. Lincoln Laboratory has developed a complete, end-to-end ATR system[1-4]. The whole system inclu- des three stages: detection (or prescreening), discri- mination and classification. In the detection stage, a two-parameter CFAR (constant false alarm rate) detector is used as a prescreener to select candidate targets in an SAR image on the basis of local brightne…  相似文献   

16.
基于YOLOv5算法的侧扫声纳海底沉船目标检测方法虽然在检测精度和速度上取得了不错的成绩, 但是如何在复杂海洋噪声背景下进一步提高小目标检测的准确性、降低重叠目标漏警和虚警率的同时实现模型的轻量化是一个亟需解决的课题。为此, 本文创新融合DETR(end-to-end object detection with transformers)与YOLOv5结构, 提出了基于DETR-YOLO模型的轻量化侧扫声纳沉船目标检测模型。首先, 加入多尺度特征复融合模块, 提高小目标检测能力。然后, 融入注意力机制SENet(squeeze-and-excitation networks), 强化对重要通道特征的敏感性。最后, 采用加权融合框(weighted boxes fusion, WBF)策略, 提升检测框的定位精度和置信度。实验结果表明, 本文模型在测试集AP_0.5和AP_0.5∶0.95值分别达到84.5%和57.7%, 较Transformer和YOLOv5a模型大幅度提高, 以较小的效率损失和权重增加为代价取得了更高的检测精度, 在提升全场景理解能力和小尺度重叠目标处理能力的同时满足轻量化工程部署需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号