首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
通过对30MnSi和30MnSiV两种钢在Gleeble-1500热模拟试验机上的高温压缩变形实验,分析了微合金元素V在不同变形条件下对变形抗力的影响,通过实验的数据计算可知,30MnSiV钢的再结晶激活能约比30MnSi钢大6.7%.  相似文献   

2.
微合金元素V对30MnSi钢热变形行为的研究   总被引:3,自引:0,他引:3  
通过对30MnSi和30MnSiV两种钢在Gleeble-1500热模拟试验机上的高温压缩变形实验,分析了微合金元素V在不同变形条件下对变形抗力的影响,通过实验的数据计算可知,30MnSiV钢的再结晶激活允约比30MnSi钢大6.7%。  相似文献   

3.
利用Gleeble热模拟试验机对微碳钢铁素体区轧制的变形抗力进行了试验研究.通过实测微碳钢铁素体区不同变形温度、应变速率、变形程度和变形抗力的关系,建立了变形抗力的数学模型.通过对模型进行回归分析,证明该模型具有良好的曲线拟合特性,为微碳钢铁素体区轧制力能参数计算提供准确的数学模型.  相似文献   

4.
采用恒应变速率凸轮式形变压缩试验机试验了四种铝合金材料的变形抗力 ,分析了应变率和应变速率对变形抗力的影响 ,结果表明随应变的增加 ,变形抗力以近似幂函数关系增加 ,在此基础上建立了简单、适用的变形抗力计算模型  相似文献   

5.
本文利用Gleeble-1500D热模拟试验机对宝钢2050热连轧厂提供的195钢所制的φ10×12mm的圆柱形试样的塑性变形抗力进行压缩试验研究,实测了变形温度范围为750~1000℃、变形速率为1s^-1和25s^-1、变形量0.7以下宝钢195钢的变形抗力,建立了变形抗力数学模型,其预测精度优于著名的志田茂变形抗力数学模型。  相似文献   

6.
彭艳华 《科技资讯》2014,(13):6-6,8
现有的铝合金变形抗力模型只针对具体牌号合金,之间没有联系,一旦成分变化就不再适用了。为了克服这个问题,本文对21种热成形典型铝合金以Hansel–Spittel模型为基础,对其模型系数A,m1,m2,m3,m4进行基于化学成分的线性拟合,建立了Hansel–Spittel模型系数的化学成分模型,进而获得基于化学成分和高温变形参数的热变形抗力模型,经检验所得模型具有较好的精度。  相似文献   

7.
通过Gleeble热模拟试验获得不同变形条件下37Mn5钢的应力应变试验数据,采用不同模型对试验数据进行回归,找到适合37Mn5钢高温变形时的变形抗力模型.同时,通过计算得到了该钢的动态再结晶动力学方程和动态再结晶体积分数表达式.将以上模型的计算值与实测值进行比较,结果表明,计算值与实测值非常接近.  相似文献   

8.
在φ340机组上进行非调质36Mn2V和37Mn5油井管钢工艺试验,对比分析二者组织性能,研究36Mn2V钢中微合金元素V的碳氮化物析出对其组织性能的影响。结果表明,36Mn2V、37Mn5钢可分别用于高钢级N80-1和低钢级J55、K55油井管的生产,36Mn2V非调质钢在高温形变诱导下析出V(C、N),促进了晶内细小铁素体和珠光体的析出,反之细晶铁素体析出促进了V(C、N)沿γ/α界面弥散析出,故而显著改善了36Mn2V非调质钢组织性能。  相似文献   

9.
TRIP800钢变形抗力的试验研究   总被引:2,自引:0,他引:2  
以TRIP800钢为例,利用Gleeble-1500热模拟试验机对金属塑性变形抗力进行试验研究。通过实测数据,分析了不同变形温度、应变速率和变形程度与变形抗力的关系,确定了金属塑性变形抗力的数学模型。并对其数学模型进行回归,模型具有良好的曲线拟合特性。  相似文献   

10.
采用高温拉伸实验方法,在变形温度为800~1250℃、变形速率为0.1s~(-1)、变形程度(ε=(△l)/(l_0))最大为0.4的条件下,实验研究了大型转子钢25Cr_2Ni_4MoV的变形抗力。通过对实验数据的非线性回归分析,提出了供有限元分析计算用的解析公式。  相似文献   

11.
微合金钢焊缝金属中的针状铁素体   总被引:2,自引:0,他引:2  
系统地分析了微合金钢焊缝金属中针状铁素体组织的形成条件及特点 ,对夹杂物粒径、数量进行了统计分析 ,并阐述了针状铁素体的形核位置。结果表明 ,焊缝金属化学成分和冷却速度是影响针状铁素体 (AF)的主要因素 ,应力对焊缝金属相变的影响很小。焊缝金属中约有 6 0 %夹杂物的粒径都小于 0 .6 μm ,只有不足 10 %的夹杂物粒径大于 1 0 μm ,约有 94 %以上提供针状铁素体 (AF)形核的夹杂物的粒径为 0 .2~ 0 .6 μm。微合金钢焊缝金属最理想的组织是获得大于 6 5 %的针状铁素体 ,其平均板条尺寸约为 1μm。AF在原奥氏体晶内合适粒径的夹杂物上形核长大 ,在较粗大的原奥氏体晶粒和夹杂物粒径大于 2 μm条件下 ,焊缝金属可得到大量的AF。AF在夹杂物上形核机理有 3种 :形核剂与核心共格界面形核机理、高能惰性基体形核机理及高应变能区形核机理。  相似文献   

12.
微合金钢焊缝金属中的针状铁素体   总被引:4,自引:1,他引:4  
系统地分析了微合金钢焊缝金属中针状铁素体组织的形成条件及特点,对夹杂物粒径、数量进行了统计分析,并阐述了针状铁素体的形核位置。结果表明,焊缝金属化学成分和冷却速度是影响针状铁素体(AF)的主要因素,应力对焊缝金属相变的影响很小。焊缝金属中约有60%夹杂物的粒径都小于0.6μm,只有不足10%的夹杂物粒径大于1.0μm,约有94%以上提供针状铁素体(AF)形核的夹杂物的粒径为0.2~0.6μm.微合金钢焊缝金属最理想的组织是获得大于65%的针状铁素体,其平均板条尺寸约为1μm,AF在原奥氏体晶内合适粒径的夹杂物上形核长大,在较粗大的原奥氏体晶粒和夹杂物粒径大于2μm条件下,焊缝金属可得到大量的AF。AF在夹杂物上形核机理有3种;形核剂与核心共格界面形核机理、高能惰性基体形核机理及高应变能区形核机理。  相似文献   

13.
对33Mn2V钢进行了热轧试验,得出峰值应力和峰值应变是随着变形温度的降低和变形速率的增大而增大的。引入流变应力计算模型,通过与试验数据对比,得出流变应力模型完全可以应用于实际的工程计算。因此可以利用此模型对材料高速应变状态下的流变应力进行模拟,建立相关材料的流变应力模型库。  相似文献   

14.
不同终轧温度下36Mn2V钢的连续冷却转变规律   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟机,测定了36Mn2V钢经四种终轧温度变形后的连续冷却膨胀曲线,结合金相-硬度法,获得了该钢种的连续冷却转变曲线.结果表明:随冷却速度的增大,实验钢的γ/α相变开始温度逐渐降低,贝氏体相变开始温度先升高到一个平台,随冷却速度的进一步增加又降低,晶粒细化;随终轧温度的降低,实验钢的动态连续冷却转变曲线整体向左上方移动,网状铁素体和晶内铁素体明显减少,晶粒略有细化;经四种温度终轧后以3℃.s-1的冷速冷却到室温的四个试样中,唯独950℃终轧的试样中未观察到贝氏体.  相似文献   

15.
非调质钢中钛氧化物冶金行为   总被引:6,自引:2,他引:6  
通过热力学计算及实验,研究了含钛汽车用非调质钢在液态和凝固过程中含钛夹杂物的析出规律.研究表明,通过调整非调质钢中O,Al和Ti的含量,可以控制夹杂的形态和尺寸,从而得到细小、弥散非金属夹杂物作为针状铁素体的形核核心,细化钢的组织,提高钢的强度和韧性.  相似文献   

16.
从氧化物冶金的观点从发,利用扫描电镜和图像分析仪研究了非调质钢加钛脱氧后钢液中夹杂物的形貌、组成和尺寸分布以及孕育时间对夹杂的影响,并考察了加钛前后钢的组织变化.结果表明:钛的脱氧产物都可成为硫化锰夹杂的形核核心;此类夹杂物呈细小弥散析出,适当的孕育时间可使夹杂细化;加钛后,钢的组织细化.  相似文献   

17.
通过高温压缩热模拟实验,研究了50Mn18Cr4V高锰无磁钢在变形温度为900~1100℃、应变速率为01~10s-1条件下的热变形行为.结果表明,VC第二相的应变诱导析出对50Mn18Cr4V的热变形行为产生重要影响.当变形温度为900~1000℃,应变速率为5s-1时,VC第二相不能充分析出,与应变速率为1s-1相比,对动态再结晶的阻碍作用减弱.应尽量使实验钢在高温段完成热加工,并适当提高应变速率.随着变形温度降低到950℃以下,材料的塑性变差,若以较低的应变速率变形,容易造成晶界开裂;应变速率过高,容易造成流变失稳,因此,以5s-1的应变速率变形,较为适宜.确定了50Mn18Cr4V无磁钢的再结晶激活能为7769kJ/mol.通过实验数据回归,建立了实验钢的高温变形抗力模型.  相似文献   

18.
对鞍钢采用氧气顶吹转炉(BOF)冶炼、非调质工艺开发的N80级油井管用钢进行了系统的工艺设计、实验室研究、工业实验及工业生产研究.提出了V、N微合金化取代常规淬火和回火工艺,设计了非调质N80的化学成分,确定了符合鞍钢氧气转炉大规模生产非调质N80的冶炼工艺以及各工序的工艺控制要点,特别是确定了实际工况下氧气转炉终点碳、氧、温度的回归公式以及VD底吹增氮动力学模型等关键工艺要点.连续生产的实测数据分析结果表明:非调质N80冶炼工艺稳定可行,化学成分、冶炼工艺设计合理,力学性能和使用性能均满足API Spec 5CT及油井管生产的特殊要求.  相似文献   

19.
The finishing rolling elongation δ of the alloying non-quenched and tempered steel is calculated with the covalent electron number nA of the strongest bond of the alloying phases and the interface electron density difference Δρ of the phase interfaces. The calculations show that the elongation δα-Fe of the matrix α-Fe decreases with rolling refinement, the elongation δα-Fe-C-M of solid solution phases (M denotes alloying element) is inversely proportional to the covalent electron number nα-Fe-C-MA of the strongest bond, the elongation decrement Δδα-Fe/α-Fe-C-M caused by interface strengthening is directly proportional to the interface electron density difference Δρα-Fe/α-Fe-C-M, but the elongation decrements Δδα-Fe/MCC1 and Δδα-Fe/MCC2 caused by dispersion strengthening and precipitation strengthening respectively are directly proportional to the ratio of the electron density difference Δρα-Fe/MCC1 and Δρα-Fe/MCC2 of the strengthening interfaces to Δρα-Fe/α-Fe-C of the basic interface α-Fe/α-Fe-C. Therefore, the finishing rolling elongation of the alloying non-quenched and tempered steel is considered to be subtracting all the elongation decrements of solution strengthening, interface strengthening, dispersion strengthening and precipitation strengthening from the elongation of the refined α-Fe matrix. The calculation formulas in this paper are integrated with the proposed ones of σS, σb and of αK delivered in another paper, the finishing rolling mechanical properties can be achieved and the calculated results agree well with the measured ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号