首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Holtmaat A  Wilbrecht L  Knott GW  Welker E  Svoboda K 《Nature》2006,441(7096):979-983
Functional circuits in the adult neocortex adjust to novel sensory experience, but the underlying synaptic mechanisms remain unknown. Growth and retraction of dendritic spines with synapse formation and elimination could change brain circuits. In the apical tufts of layer 5B (L5B) pyramidal neurons in the mouse barrel cortex, a subset of dendritic spines appear and disappear over days, whereas most spines are persistent for months. Under baseline conditions, new spines are mostly transient and rarely survive for more than a week. Transient spines tend to be small, whereas persistent spines are usually large. Because most excitatory synapses in the cortex occur on spines, and because synapse size and the number of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors are proportional to spine volume, the excitation of pyramidal neurons is probably driven through synapses on persistent spines. Here we test whether the generation and loss of persistent spines are enhanced by novel sensory experience. We repeatedly imaged dendritic spines for one month after trimming alternate whiskers, a paradigm that induces adaptive functional changes in neocortical circuits. Whisker trimming stabilized new spines and destabilized previously persistent spines. New-persistent spines always formed synapses. They were preferentially added on L5B neurons with complex apical tufts rather than simple tufts. Our data indicate that novel sensory experience drives the stabilization of new spines on subclasses of cortical neurons. These synaptic changes probably underlie experience-dependent remodelling of specific neocortical circuits.  相似文献   

2.
Long-term dendritic spine stability in the adult cortex   总被引:21,自引:0,他引:21  
Grutzendler J  Kasthuri N  Gan WB 《Nature》2002,420(6917):812-816
The structural dynamics of synapses probably has a crucial role in the development and plasticity of the nervous system. In the mammalian brain, the vast majority of excitatory axo-dendritic synapses occur on dendritic specializations called 'spines'. However, little is known about their long-term changes in the intact developing or adult animal. To address this question we developed a transcranial two-photon imaging technique to follow identified spines of layer-5 pyramidal neurons in the primary visual cortex of living transgenic mice expressing yellow fluorescent protein. Here we show that filopodia-like dendritic protrusions, extending and retracting over hours, are abundant in young animals but virtually absent from the adult. In young mice, within the 'critical period' for visual cortex development, approximately 73% of spines remain stable over a one-month interval; most changes are associated with spine elimination. In contrast, in adult mice, the overwhelming majority of spines (approximately 96%) remain stable over the same interval with a half-life greater than 13 months. These results indicate that spines, initially plastic during development, become remarkably stable in the adult, providing a potential structural basis for long-term information storage.  相似文献   

3.
Zuo Y  Yang G  Kwon E  Gan WB 《Nature》2005,436(7048):261-265
A substantial decrease in the number of synapses occurs in the mammalian brain from the late postnatal period until the end of life. Although experience plays an important role in modifying synaptic connectivity, its effect on this nearly lifelong synapse loss remains unknown. Here we used transcranial two-photon microscopy to visualize postsynaptic dendritic spines in layer I of the barrel cortex in transgenic mice expressing yellow fluorescent protein. We show that in young adolescent mice, long-term sensory deprivation through whisker trimming prevents net spine loss by preferentially reducing the rate of ongoing spine elimination, not by increasing the rate of spine formation. This effect of deprivation diminishes as animals mature but still persists in adulthood. Restoring sensory experience after adolescent deprivation accelerates spine elimination. Similar to sensory manipulation, the rate of spine elimination decreases after chronic blockade of NMDA (N-methyl-D-aspartate) receptors with the antagonist MK801, and accelerates after drug withdrawal. These studies of spine dynamics in the primary somatosensory cortex suggest that experience plays an important role in the net loss of synapses over most of an animal's lifespan, particularly during adolescence.  相似文献   

4.
Chklovskii DB  Mel BW  Svoboda K 《Nature》2004,431(7010):782-788
Current thinking about long-term memory in the cortex is focused on changes in the strengths of connections between neurons. But ongoing structural plasticity in the adult brain, including synapse formation/elimination and remodelling of axons and dendrites, suggests that memory could also depend on learning-induced changes in the cortical 'wiring diagram'. Given that the cortex is sparsely connected, wiring plasticity could provide a substantial boost in storage capacity, although at a cost of more elaborate biological machinery and slower learning.  相似文献   

5.
Fu M  Yu X  Lu J  Zuo Y 《Nature》2012,483(7387):92-95
Many lines of evidence suggest that memory in the mammalian brain is stored with distinct spatiotemporal patterns. Despite recent progresses in identifying neuronal populations involved in memory coding, the synapse-level mechanism is still poorly understood. Computational models and electrophysiological data have shown that functional clustering of synapses along dendritic branches leads to nonlinear summation of synaptic inputs and greatly expands the computing power of a neural network. However, whether neighbouring synapses are involved in encoding similar memory and how task-specific cortical networks develop during learning remain elusive. Using transcranial two-photon microscopy, we followed apical dendrites of layer 5 pyramidal neurons in the motor cortex while mice practised novel forelimb skills. Here we show that a third of new dendritic spines (postsynaptic structures of most excitatory synapses) formed during the acquisition phase of learning emerge in clusters, and that most such clusters are neighbouring spine pairs. These clustered new spines are more likely to persist throughout prolonged learning sessions, and even long after training stops, than non-clustered counterparts. Moreover, formation of new spine clusters requires repetition of the same motor task, and the emergence of succedent new spine(s) accompanies the strengthening of the first new spine in the cluster. We also show that under control conditions new spines appear to avoid existing stable spines, rather than being uniformly added along dendrites. However, succedent new spines in clusters overcome such a spatial constraint and form in close vicinity to neighbouring stable spines. Our findings suggest that clustering of new synapses along dendrites is induced by repetitive activation of the cortical circuitry during learning, providing a structural basis for spatial coding of motor memory in the mammalian brain.  相似文献   

6.
Matsuzaki M  Honkura N  Ellis-Davies GC  Kasai H 《Nature》2004,429(6993):761-766
Dendritic spines of pyramidal neurons in the cerebral cortex undergo activity-dependent structural remodelling that has been proposed to be a cellular basis of learning and memory. How structural remodelling supports synaptic plasticity, such as long-term potentiation, and whether such plasticity is input-specific at the level of the individual spine has remained unknown. We investigated the structural basis of long-term potentiation using two-photon photolysis of caged glutamate at single spines of hippocampal CA1 pyramidal neurons. Here we show that repetitive quantum-like photorelease (uncaging) of glutamate induces a rapid and selective enlargement of stimulated spines that is transient in large mushroom spines but persistent in small spines. Spine enlargement is associated with an increase in AMPA-receptor-mediated currents at the stimulated synapse and is dependent on NMDA receptors, calmodulin and actin polymerization. Long-lasting spine enlargement also requires Ca2+/calmodulin-dependent protein kinase II. Our results thus indicate that spines individually follow Hebb's postulate for learning. They further suggest that small spines are preferential sites for long-term potentiation induction, whereas large spines might represent physical traces of long-term memory.  相似文献   

7.
Lai CS  Franke TF  Gan WB 《Nature》2012,483(7387):87-91
It is generally believed that fear extinction is a form of new learning that inhibits rather than erases previously acquired fear memories. Although this view has gained much support from behavioural and electrophysiological studies, the hypothesis that extinction causes the partial erasure of fear memories remains viable. Using transcranial two-photon microscopy, we investigated how neural circuits are modified by fear learning and extinction by examining the formation and elimination of postsynaptic dendritic spines of layer-V pyramidal neurons in the mouse frontal association cortex. Here we show that fear conditioning by pairing an auditory cue with a footshock increases the rate of spine elimination. By contrast, fear extinction by repeated presentation of the same auditory cue without a footshock increases the rate of spine formation. The degrees of spine remodelling induced by fear conditioning and extinction strongly correlate with the expression and extinction of conditioned fear responses, respectively. Notably, spine elimination and formation induced by fear conditioning and extinction occur on the same dendritic branches in a cue- and location-specific manner: cue-specific extinction causes formation of dendritic spines within a distance of two micrometres from spines that were eliminated after fear conditioning. Furthermore, reconditioning preferentially induces elimination of dendritic spines that were formed after extinction. Thus, within vastly complex neuronal networks, fear conditioning, extinction and reconditioning lead to opposing changes at the level of individual synapses. These findings also suggest that fear memory traces are partially erased after extinction.  相似文献   

8.
Toni N  Buchs PA  Nikonenko I  Bron CR  Muller D 《Nature》1999,402(6760):421-425
Structural remodelling of synapses and formation of new synaptic contacts has been postulated as a possible mechanism underlying the late phase of long-term potentiation (LTP), a form of plasticity which is involved in learning and memory. Here we use electron microscopy to analyse the morphology of synapses activated by high-frequency stimulation and identified by accumulated calcium in dendritic spines. LTP induction resulted in a sequence of morphological changes consisting of a transient remodelling of the postsynaptic membrane followed by a marked increase in the proportion of axon terminals contacting two or more dendritic spines. Three-dimensional reconstruction revealed that these spines arose from the same dendrite. As pharmacological blockade of LTP prevented these morphological changes, we conclude that LTP is associated with the formation of new, mature and probably functional synapses contacting the same presynaptic terminal and thereby duplicating activated synapses.  相似文献   

9.
Sabatini BL  Svoboda K 《Nature》2000,408(6812):589-593
Most synapses form on small, specialized postsynaptic structures known as dendritic spines. The influx of Ca2+ ions into such spines--through synaptic receptors and voltage-sensitive Ca2+ channels (VSCCs)--triggers diverse processes that underlie synaptic plasticity. Using two-photon laser scanning microscopy, we imaged action-potential-induced transient changes in Ca2+ concentration in spines and dendrites of CA1 pyramidal neurons in rat hippocampal slices. Through analysis of the large trial-to-trial fluctuations in these transients, we have determined the number and properties of VSCCs in single spines. Here we report that each spine contains 1-20 VSCCs, and that this number increases with spine volume. We are able to detect the opening of a single VSCC on a spine. In spines located on the proximal dendritic tree, VSCCs normally open with high probability (approximately 0.5) following dendritic action potentials. Activation of GABA(B) receptors reduced this probability in apical spines to approximately 0.3 but had no effect on VSCCs in dendrites or basal spines. Our studies show that the spatial distribution of VSCC subtypes and their modulatory potential is regulated with submicrometre precision.  相似文献   

10.
Remondes M  Schuman EM 《Nature》2002,416(6882):736-740
The hippocampus is necessary for the acquisition and retrieval of declarative memories. The best-characterized sensory input to the hippocampus is the perforant path projection from layer II of entorhinal cortex (EC) to the dentate gyrus. Signals are then processed sequentially in the hippocampal CA fields before returning to the cortex via CA1 pyramidal neuron spikes. There is another EC input-the temporoammonic (TA) pathway-consisting of axons from layer III EC neurons that make synaptic contacts on the distal dendrites of CA1 neurons. Here we show that this pathway modulates both the plasticity and the output of the rat hippocampal formation. Bursts of TA activity can, depending on their timing, either increase or decrease the probability of Schaffer-collateral (SC)-evoked CA1 spikes. TA bursts can also significantly reduce the magnitude of synaptic potentiation at SC-CA1 synapses. The TA-CA1 synapse itself exhibits both long-term depression (LTD) and long-term potentiation (LTP). This capacity for bi-directional plasticity can, in turn, regulate the TA modulation of CA1 activity: LTP or LTD of the TA pathway either enhances or diminishes the gating of CA1 spikes and plasticity inhibition, respectively.  相似文献   

11.
W Thompson 《Nature》1983,302(5909):614-616
The synaptic connections among the cells of the vertebrate nervous system undergo extensive rearrangements early in development. During their initial growth, neurones apparently form synaptic connections with an excessive number of targets, later retracting a portion of these synapses in establishing the adult neural circuits. Because of the profound effects which experience has upon the developing nervous system, a question of considerable interest has been the role which the functional use of these developing synapses might play in determining the final pattern of connectivity. At the neuromuscular junction the early changes in synaptic connections are well documented, and here questions about the importance of function can be relatively easily addressed. Mammalian skeletal muscle fibres experience a perinatal period of synapse elimination so that all but one of several synapses formed on each muscle fibre are lost. This synapse elimination is sensitive to alterations of neuromuscular use or activity. Reduction of muscle use by tenotomy or by paralysis of the muscle with drugs blocking nerve impulse conduction or neuromuscular transmission delays or even prevents synapse loss, while increased use produced by stimulation of the muscle nerve apparently accelerates the rate at which synapses are lost. I report here a further examination of the role of neuromuscular activity in synapse elimination. I show that chronic neuromuscular stimulation accelerates synapse elimination but that this acceleration is dependent on the temporal pattern in which the stimuli are presented: brief stimulus trains containing 100 Hz bursts of stimuli produce this acceleration whereas the same number of stimuli presented continuously at 1 Hz do not. Furthermore, the 100 Hz activity pattern which is effective in altering synapse elimination also alters two other muscle properties: the sensitivity of the muscle fibers to acetylcholine and the 'speed' of muscle contractions. These findings suggest that the ability of muscle fibres to maintain more than one nerve terminal, like other muscle properties, is sensitive to the pattern of muscle use rather than just the total amount of use.  相似文献   

12.
Harvey CD  Svoboda K 《Nature》2007,450(7173):1195-1200
Long-term potentiation (LTP) of synaptic transmission underlies aspects of learning and memory. LTP is input-specific at the level of individual synapses, but neural network models predict interactions between plasticity at nearby synapses. Here we show in mouse hippocampal pyramidal cells that LTP at individual synapses reduces the threshold for potentiation at neighbouring synapses. After input-specific LTP induction by two-photon glutamate uncaging or by synaptic stimulation, subthreshold stimuli, which by themselves were too weak to trigger LTP, caused robust LTP and spine enlargement at neighbouring spines. Furthermore, LTP induction broadened the presynaptic-postsynaptic spike interval for spike-timing-dependent LTP within a dendritic neighbourhood. The reduction in the threshold for LTP induction lasted approximately 10 min and spread over approximately 10 microm of dendrite. These local interactions between neighbouring synapses support clustered plasticity models of memory storage and could allow for the binding of behaviourally linked information on the same dendritic branch.  相似文献   

13.
Chen X  Leischner U  Rochefort NL  Nelken I  Konnerth A 《Nature》2011,475(7357):501-505
The individual functional properties and spatial arrangement of afferent synaptic inputs on dendrites have a critical role in the processing of information by neurons in the mammalian brain. Although recent work has identified visually-evoked local dendritic calcium signals in the rodent visual cortex, sensory-evoked signalling on the level of dendritic spines, corresponding to individual afferent excitatory synapses, remains unexplored. Here we used a new variant of high-resolution two-photon imaging to detect sensory-evoked calcium transients in single dendritic spines of mouse cortical neurons in vivo. Calcium signals evoked by sound stimulation required the activation of NMDA (N-methyl-D-aspartate) receptors. Active spines are widely distributed on basal and apical dendrites and pure-tone stimulation at different frequencies revealed both narrowly and widely tuned spines. Notably, spines tuned for different frequencies were highly interspersed on the same dendrites: even neighbouring spines were mostly tuned to different frequencies. Thus, our results demonstrate that NMDA-receptor-dependent single-spine synaptic inputs to the same dendrite are highly heterogeneous. Furthermore, our study opens the way for in vivo mapping of functionally defined afferent sensory inputs with single-synapse resolution.  相似文献   

14.
Rongo C  Kaplan JM 《Nature》1999,402(6758):195-199
Synaptic connections undergo a dynamic process of stabilization or elimination during development, and this process is thought to be critical in memory and learning and in establishing the specificity of synaptic connections. The type II calcium- and calmodulin-dependent protein kinase (CaMKII) has been proposed to be pivotal in regulating synaptic strength and in maturation of synapses during development. Here we describe how CaMKII regulates the formation of central glutamatergic synapses in Caenorhabditis elegans. During larval development, the density of ventral nerve cord synapses containing the GLR-1 glutamate receptor is held constant despite marked changes in neurite length. The coupling of synapse number to neurite length requires both CaMKII and voltage-gated calcium channels. CaMKII regulates GLR-1 by at least two distinct mechanisms: regulating transport of GLR-1 from cell bodies to neurites; and regulating the addition or maintenance of GLR-1 to postsynaptic elements.  相似文献   

15.
目的:研究舌传入神经形成的突触类型及分布规律,探讨舌传人纤维形成的主要类型突触。方法:按传入纤维性质和终止核团,分4个单项组:快适应纤维终止于三叉神经脊束核组(FA-VS),快适应纤维终止于三叉神经脑桥核组(FA-VP),慢适应纤维终止于三叉神经脊束核组(SA-VS)。慢适应纤维终止于三叉神经脑桥核组(SA-VP);4个复合组:快适应纤维组(FA),慢适应纤维组(SA),三叉神经脊束核组(VS),三叉神经脑桥核组(VP)组。在确定了脑干内的舌传入纤维后进行细胞内注射,电镜连续切片观察,分析突触类型。结果:突触按组成数目分单纯型、中间型和复杂型3种类型。各组中问型突触出现频率最多,组间数据较接近;单纯型和复杂型突触出现频率相对较少,组问数据较分散;FA-VS组单纯型出现频率最多,SA-VP复杂型出现频率最多;各组单纯型突触增、减时其复杂型突触相应减、增。结论:中间型突触为主要类型突触;单纯型和复杂型突触为辅助型突触;单纯型和复杂型突触有完全相反的势态分布;单纯型和复杂型突触也有相应增、减分布规律。  相似文献   

16.
Lee HK  Barbarosie M  Kameyama K  Bear MF  Huganir RL 《Nature》2000,405(6789):955-959
Bidirectional changes in the efficacy of neuronal synaptic transmission, such as hippocampal long-term potentiation (LTP) and long-term depression (LTD), are thought to be mechanisms for information storage in the brain. LTP and LTD may be mediated by the modulation of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazloe proprionic acid) receptor phosphorylation. Here we show that LTP and LTD reversibly modify the phosphorylation of the AMPA receptor GluR1 subunit. However, contrary to the hypothesis that LTP and LTD are the functional inverse of each other, we find that they are associated with phosphorylation and dephosphorylation, respectively, of distinct GluR1 phosphorylation sites. Moreover, the site modulated depends on the stimulation history of the synapse. LTD induction in naive synapses dephosphorylates the major cyclic-AMP-dependent protein kinase (PKA) site, whereas in potentiated synapses the major calcium/calmodulin-dependent protein kinase II (CaMKII) site is dephosphorylated. Conversely, LTP induction in naive synapses and depressed synapses increases phosphorylation of the CaMKII site and the PKA site, respectively. LTP is differentially sensitive to CaMKII and PKA inhibitors depending on the history of the synapse. These results indicate that AMPA receptor phosphorylation is critical for synaptic plasticity, and that identical stimulation conditions recruit different signal-transduction pathways depending on synaptic history.  相似文献   

17.
Lendvai B  Stern EA  Chen B  Svoboda K 《Nature》2000,404(6780):876-881
Do changes in neuronal structure underlie cortical plasticity? Here we used time-lapse two-photon microscopy of pyramidal neurons in layer 2/3 of developing rat barrel cortex to image the structural dynamics of dendritic spines and filopodia. We found that these protrusions were highly motile: spines and filopodia appeared, disappeared or changed shape over tens of minutes. To test whether sensory experience drives this motility we trimmed whiskers one to three days before imaging. Sensory deprivation markedly (approximately 40%) reduced protrusive motility in deprived regions of the barrel cortex during a critical period around postnatal days (P)11-13, but had no effect in younger (P8-10) or older (P14-16) animals. Unexpectedly, whisker trimming did not change the density, length or shape of spines and filopodia. However, sensory deprivation during the critical period degraded the tuning of layer 2/3 receptive fields. Thus sensory experience drives structural plasticity in dendrites, which may underlie the reorganization of neural circuits.  相似文献   

18.
Allen NJ  Bennett ML  Foo LC  Wang GX  Chakraborty C  Smith SJ  Barres BA 《Nature》2012,486(7403):410-414
In the developing central nervous system (CNS), the control of synapse number and function is critical to the formation of neural circuits. We previously demonstrated that astrocyte-secreted factors powerfully induce the formation of functional excitatory synapses between CNS neurons. Astrocyte-secreted thrombospondins induce the formation of structural synapses, but these synapses are postsynaptically silent. Here we use biochemical fractionation of astrocyte-conditioned medium to identify glypican 4 (Gpc4) and glypican 6 (Gpc6) as astrocyte-secreted signals sufficient to induce functional synapses between purified retinal ganglion cell neurons, and show that depletion of these molecules from astrocyte-conditioned medium significantly reduces its ability to induce postsynaptic activity. Application of Gpc4 to purified neurons is sufficient to increase the frequency and amplitude of glutamatergic synaptic events. This is achieved by increasing the surface level and clustering, but not overall cellular protein level, of the GluA1 subunit of the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) glutamate receptor (AMPAR). Gpc4 and Gpc6 are expressed by astrocytes in vivo in the developing CNS, with Gpc4 expression enriched in the hippocampus and Gpc6 enriched in the cerebellum. Finally, we demonstrate that Gpc4-deficient mice have defective synapse formation, with decreased amplitude of excitatory synaptic currents in the developing hippocampus and reduced recruitment of AMPARs to synapses. These data identify glypicans as a family of novel astrocyte-derived molecules that are necessary and sufficient to promote glutamate receptor clustering and receptivity and to induce the formation of postsynaptically functioning CNS synapses.  相似文献   

19.
E M Callaway  J M Soha  D C Van Essen 《Nature》1987,328(6129):422-426
During normal postnatal maturation, mammalian muscles undergo an orderly process of synapse elimination, whereby each muscle fibre loses all but one of the multiple inputs with which it is endowed at birth. Experimental perturbations that increase or decrease the overall activity of nerve and/or muscle cause a corresponding increase or decrease in the overall rate of neuromuscular synapse elimination. On other grounds it has been suggested that competition among motor neurons is important in determining which synapses survive and which are eliminated. Would a difference in activity among the terminals at the same endplate affect the outcome of the competition and not just its rate? We investigated this issue by blocking activity for four days in a small fraction of the motor neurons innervating the neonatal rabbit soleus muscle. Twitch tensions of motor units were subsequently measured for both the active and inactive populations of neurons to assess whether the inactive neurons had lost fewer or more synapses than is normal. We found that inactive motor neurons have a significant advantage compared to active counterparts in control experiments, a finding opposite to that expected if the neuromuscular junction operated by classical 'Hebbian' rules of competition.  相似文献   

20.
Bingol B  Schuman EM 《Nature》2006,441(7097):1144-1148
The regulated degradation of proteins by the ubiquitin proteasome pathway is emerging as an important modulator of synaptic function and plasticity. The proteasome is a large, multi-subunit cellular machine that recognizes, unfolds and degrades target polyubiquitinated proteins. Here we report NMDA (N-methyl-D-aspartate) receptor-dependent redistribution of proteasomes from dendritic shafts to synaptic spines upon synaptic stimulation, providing a mechanism for local protein degradation. Using a proteasome-activity reporter and local perfusion, we show that synaptic stimulation regulates proteasome activity locally in the dendrites. We used restricted photobleaching of individual spines and dendritic shafts to reveal the dynamics that underlie proteasome sequestration, and show that activity modestly enhances the entry rate of proteasomes into spines while dramatically reducing their exit rate. Proteasome sequestration is persistent, reflecting an association with the actin-based cytoskeleton. Together, our data indicate that synaptic activity can promote the recruitment and sequestration of proteasomes to locally remodel the protein composition of synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号