首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
泡沫填充圆管的动态轴向压缩吸能特性   总被引:7,自引:0,他引:7  
为开发可用于汽车安全设计和航天器回收等领域的新型碰撞吸能结构,在泡沫填充圆管受准静态轴向压缩吸能特性分析模型的基础上,建立了轴向压缩条件下的动态吸能特性分析模型。分析结果表明,加载速率对泡沫填充圆管的吸能能力有较大影响,吸能能力随加载速率的增大而提高。该文还采用LS-DYNA软件对泡沫填充圆管的轴向压缩吸能过程进行了数值模拟,并与理论分析结果进行了对比。结果表明,二者具有较好的一致性。  相似文献   

2.
低碳钢和不锈钢圆管轴向冲击碰撞吸能特性研究   总被引:4,自引:0,他引:4  
针对金属圆管的吸能设计,通过落锤试验和动力显式有限元法对低碳钢和不锈钢圆管的碰撞吸能特性进行了研究。研究发现:轴向冲击下圆管的失效模式分为轴对称模式、过渡模式和非轴对称模式,初始几何缺陷的随机性是产生不同失效模式的原因之一。给出了平均碰撞力的设计公式,最后探讨了采用铝基蜂窝状填充材料对圆管耐撞强度的影响。  相似文献   

3.
为了解填充泡沫铝对钢管吸收能量的影响及其能量吸收特性,通过试验方法研究了单个空钢管与泡沫铝填充钢管的准静态横向压缩性能及吸能特性。研究结果显示:空钢管在横向压缩作用下,其名义应力应变曲线关系与多孔金属材料比较相似。相同壁厚的钢管在横向压缩下,管径越大,其名义屈服应力越小,平台段越长。填充泡沫铝能改变其变形机制,提高钢管在横向压缩下的屈服应力值,较大地提高其能量吸收性能。泡沫铝密度对这种性能的提高影响较小,而钢管的直径对其影响较大。  相似文献   

4.
利用有限元软件ABAQUS对7种不同几何尺寸的泡沫铝填充管进行准静态轴向压缩的数值仿真分析,系统地研究了管的高度、壁厚、直径以及泡沫铝的填充对圆管吸能性能的影响;与实验对比,分析了7种泡沫铝填充试件的平均载荷、初始峰值载荷、比吸能(ESA)和压缩力效率(ECF)等吸能评价指标。研究结果表明,泡沫铝填充管在准静态轴向压缩时,管的壁厚与直径对管的吸能性能有显著影响;管的高度对其吸能性能影响较小,但高度的增加可以增加管的总吸能;泡沫铝的填充提高了管的承载力、总吸能、比吸能和压缩力效率。本研究成果可为设计理想的缓冲吸能装置提供一定的技术依据。  相似文献   

5.
泡沫铝填充管汽车保险杠的研究   总被引:2,自引:0,他引:2  
为满足汽车向轻量化、低能耗、安全舒适方向发展的要求,采用新材料制造汽车零件。以泡沫铝应于汽车保险杠为研究背景.研究了泡沫铝填充管的吸能特性,建立了相应的数学模型。并将泡沫铝汽车保险杠与传统的空心金属管保险杠进行了比较。结果表明泡沫铝填充管汽车保险杠更能满足汽车向质量轻、体积小、环保等方向发展的要求。将具有很大的发展前景。  相似文献   

6.
多孔泡沫材料的声吸收特性   总被引:5,自引:4,他引:5  
为了结合泡沫金属兼有的高吸声和高热传导两种特性以进一步提高其吸声性能,回顾了泡沫金属材料的应用和声学建模;通过对泡沫金属和用于制造泡沫金属的高分子基体材料的实验,比较了作者提出的声波通过泡沫金属传播的3种黏滞模型的预测结果,表明所有模型在泡沫金属典型胞元尺寸所对应的低雷诺数范围内是有效的(假定声波为线性,幅值低于160 dB).第一种模型考虑了声波沿平行于刚性圆柱束轴线方向传播时所受到的空气曳力,第二种模型考虑了声波沿垂直于刚性圆柱束轴线方向的传播,第三种模型考虑了声波通过球形节点的传播.结合这3种模型,提出了一种泡沫金属声学性能的综合模型,可以用来预测泡沫金属的声吸收特性.此外,还介绍了一种用于泡沫金属材料基本声传播特性实验的后处理技术.  相似文献   

7.
采用非线性有限元LS-DYNA软件仿真与试验两种方法,研究了泡沫铝填充件对薄壁圆管碰撞稳定性的改善.首先,根据碰撞力要求,设计选择了薄壁圆管及泡沫铝填充件各参数;通过样件试验与有限元仿真计算,两者获得了较为一致的结果,从而证实了设计的合理性及非线性有限元仿真的可行性.最后,把上述结果应用于列车被动安全装置防爬器的碰撞仿...  相似文献   

8.
多轴向经编增强复合材料低速冲击下能量吸收特性的研究   总被引:7,自引:0,他引:7  
从多轴向经编增强结构本身的特点出发,利用我们自己建立的一套落锤冲击试验装置,对玻璃纤维/DTY多轴向经编增强玻璃纤维/环氧树脂复合材料板进行了低速低能量的冲击试验研究。通过传感器技术及其相应的信号处理装置记录落锤冲击试验过程中速度随时间变化曲线,直接计算冲击动能和材料所吸收的冲击能量,通过数学处理得到各种冲击试样的能量吸收系数,对多轴向经编结构复合材料的冲击失效过程和影响能量吸收特性的因素进行试验研究和分析。  相似文献   

9.
本研究将针对结构抗爆炸冲击这一需求,提出了一种圆管吸能装置,并与横卧单、双圆管吸能装置进行比较。通过计算分析证明了该系统在冲击波作用下能够有效的吸收外来冲击能量,削弱冲击波荷载峰值,降低对下部结构的损伤破坏,提高结构抗力,是一种性能优良的抗冲击能量吸收装置。  相似文献   

10.
以樟子松为研究对象,利用横纹压缩蠕变试验研究其木材吸能特性与黏弹性的关系。结果表明:樟子松木材在静态横纹压缩径向加载时,存在明显三段式曲线,第2阶段平台区体现了良好的能量吸收特性; 樟子松木材横纹压缩时的短期蠕变行为可用四元件流变模型进行描述; 随着应力水平的上升,樟子松木材的瞬间弹性模量和Kelvin模型中的延时弹性模量及黏性系数均呈上升趋势,而Maxwell模型中的黏性系数和松弛时间呈明显下降趋势; 在蠕变时,随着应力水平的上升,樟子松木材的能量吸收能力增加且缓冲系数呈下降趋势。  相似文献   

11.
圆钢管搭接节点延性分析   总被引:4,自引:3,他引:1  
根据圆钢管搭接节点静力和滞回性能试验,对特定几何参数搭接节点的延性和塑性耗能能力进行了量化.由延性系数分析可知除SJ3的延性系数较低外其余搭接节点试件具有较好的延性;承受反复荷载作用时与单调加载时相比节点变形率低.由承载力储备分析可知反复荷载作用下试件的承载力储备较低,而静力荷载作用下试件的承载力储备均较大,说明承受反复荷载作用时节点的承载力储备降低.对于搭接节点τ(腹杆与弦杆壁厚比值)值较大时,节点承受反复荷载时的延性较差.由搭接节点耗能分析可知,总体看来各试件具有良好的耗能能力.  相似文献   

12.
圆管相贯加强环节点承载力与变形性能分析   总被引:2,自引:0,他引:2  
根据薄壁钢管的相贯节点的特性,提出了在钢管内部设置加强环节点构造形式,建立了有限元模型;运用ANSYS非线性有限元分析法,分别计算了在主支管相交区内不同方式设置不同数量和大小的加强环节点的各项指标,分析了加强环节点的受力特征与破坏模式,探讨了不同类型的加强环节点的承载力和变形性能,计算结果表明,在不同荷载组合下对节点进行局部加强环的构造型式对于提高节点承载力和减小局部变形是非常有效的措施.最后提出了相关的设计建议取值,避免了部分单纯由构造确定加强环节点的盲目性.  相似文献   

13.
径向压力作用下功能梯度圆板的过屈曲   总被引:4,自引:0,他引:4  
基于经典非线性板理论,研究了功能梯度圆板在均匀的径向压力作用下的轴对称过屈曲问题.假设功能梯度材料性质只沿板厚度方向,并呈成分含量的幂指数函数形式变化.推导了问题的控制方程,并用打靶法对其进行数值求解.利用数值结果考察了梯度材料性质以及边界条件对板过屈曲行为的影响.结果表明,功能梯度板的过屈曲行为与各向同性均匀板有很大区别,材料的梯度性质和边界条件都对其有重要影响.  相似文献   

14.
取弹性圆薄板内一微元体,建立了圆板在非保守载荷——切向均布随动力作用下的轴对称非线性控制方程,考虑周边固支和周边不可移简支两种边界条件,采用打靶法和解析延拓法求解了所得两点边值问题,获得了圆薄板特征值问题的数值解,结果可供工程设计时参考使用.  相似文献   

15.
分析了预制钢管超高强石渣混凝土叠合柱与钢筋混凝土构件、钢管混凝土构件及非预制钢管混凝土叠合柱相比较的优点.基于实验现象观察的基础上提出计算假设,并以预制钢管超高强石渣混凝土叠合短柱的极限承载力的研究成果为基础,给出了预制钢管超高强石渣混凝土叠合中长柱的承载力计算公式,弥补了《钢管混凝土叠合柱结构技术规程》(CECS188:2005)中未考虑长细比对核心钢管混凝土承载力影响的不足.  相似文献   

16.
本文采用刚塑性假定和拱轴线不可伸长的假设,考虑塑性铰的移动,对受集中质量对称撞击的固支深圆拱的动力响应进行分析。由于把问题简化为一个自由度系统的运动,使得整个运动过程可以较方便地计算出来。计算结果表明,深圆拱的动力响应特性不同于悬臂梁,移行铰不可能到达拱脚,输入的能量全部消耗在塑性铰的移动过程中。结构的响应时间和撞击点的最终位移随撞击物与拱之质量比的增加而增大。  相似文献   

17.
GFRP混凝土圆形管柱试验研究   总被引:1,自引:0,他引:1  
通过对GFRP混凝土圆形管长柱的轴心受压试验研究,分析了荷载—应变关系曲线和破坏形态,GFRP混凝土圆形管柱的泊松比变化规律,GFRP混凝土圆形管柱的受力阶段,以及管柱的整体承载力及变形性能。比较理论分析与试验结果,吻合较好。  相似文献   

18.
针对钢管混凝土核心柱在应用中存在内外不能很好地共同工作的问题提出了一种新的双钢骨混凝土组合柱。通过计算分析得出了双钢骨混凝土柱的计算公式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号