首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Electron dynamics in collisionless magnetic reconnection   总被引:1,自引:0,他引:1  
Magnetic reconnection provides a physical mechanism for fast energy conversion from magnetic energy to plasma kinetic energy. It is closely associated with many explosive phenomena in space plasma, usually collisionless in character. For this reason, researchers have become more interested in collisionless magnetic reconnection. In this paper, the various roles of electron dynamics in collisionless magnetic reconnection are reviewed. First, at the ion inertial length scale, ions and electrons are decoupled. The resulting Hall effect determines the reconnection electric field. Moreover, electron motions determine the current system inside the reconnection plane and the electron density cavity along the separatrices. The current system in this plane produces an out-of-plane magnetic field. Second, at the electron inertial length scale, the anisotropy of electron pressure determines the magnitude of the reconnection electric field in this region. The production of energetic electrons, which is an important characteristic during magnetic reconnection, is accelerated by the reconnection electric field. In addition, the different topologies, temporal evolution and spatial distribution of the magnetic field affect the accelerating process of electrons and determine the final energy of the accelerated electrons. Third, we discuss results from simulations and spacecraft observations on the secondary magnetic islands produced due to secondary instabilities around the X point, and the associated energetic electrons. Furthermore, progress in laboratory plasma studies is also discussed in regard to electron dynamics during magnetic reconnection. Finally, some unresolved problems are presented.  相似文献   

2.
Two-dimensional particle-in-cell (PIC) simulation is used to investigate electron dynamics in collisionless magnetic reconnection, and the proton/electron mass ratio is taken to be m i /m e = 256. The results show that the presence of a strong initial guide field will change the direction of the electron flow. The electron density cavities and the parallel electric field can be found in the electron inflow region along the separatrix, and the electron inflow and density cavities only appear in the second and fourth quadrants. What is different from the results with a smaller mass ratio is that new structures appear in the diffusion region near the X line: (1) Narrow regions of density enhancement and density cavities can be found synchronously in this region; and (2) corresponding to the electron density changes near the X line, the strong parallel electric fields are found to occur in the first and third quadrants. These electric fields perhaps play a more important role in acceleration and heating electrons than those fields located in the density cavities. Supported by National Natural Science Foundation of China (Grant No. 40725013) and Open Research Program Foundation of State Key Laboratory for Space Weather, Chinese Academy Sciences  相似文献   

3.
Magnetic reconnection is an important universal plasma dissipation process that converts magnetic energy into plasma thermal and kinetic energy,and simultaneously changes the magnetic field topology.In this paper,we report the first observation of energetic electrons associated with asymmetric reconnection in the sheath of an interplanetary coronal mass ejection.The magnetic field shear angle was about 151°,implying guide-field reconnection.The width of the exhaust was about 8×104 km.The reconnection rate was estimated as 0.044-0.08,which is consistent with fast reconnection theory and previous observations.We observed flux enhancements of energetic electrons with energy up to 400 keV in this reconnection exhaust.The region where ener- getic electron fluxes were enhanced is located at one pair of separatrices in the higher density hemisphere.We discuss these observation results,and compare with previous observations and recent kinetic simulations.  相似文献   

4.
In collisionless reconnection,the magnetic field near the separatrix is stronger than that around the X-line,so an electron-beam can be formed and flows toward the X-line,which leads to a decrease of the electron density near the separatrix.Having been accelerated around the X-line,the electrons flow out along the magnetic field lines in the inner side of the separatrix.A quadruple structure of the Hall magnetic field By is formed by such a current system.A 2D particle-in-cell (PIC) simulation code is used ...  相似文献   

5.
关于磁重联区三维磁零点的卫星观测研究   总被引:2,自引:0,他引:2  
磁重联是等离子体中磁场能量快速转换为粒子动能和热能的主要途径,是空间物理和等离子体物理中的重要现象.磁重联过程发生在磁场的拓扑分形面上;这种分形面一般是由磁零点附近磁场梯度张量的本征矢量确定的.磁零点的三维特性要求至少空间4点的同时测量.Cluster计划提供了迄今为止唯一的卫星测量手段.基于Poincare指数方法分析Cluster卫星在地球磁尾的探测数据,(1) 找到了磁重联过程中存在4种磁零点的证据;(2) 发现磁零点周围磁场的空间特征尺度大约为离子惯性长度,从而首次揭示霍尔效应可能在三维磁重联中起重要作用;(3) 在重联区找到匹配的磁零点对,并计算出零点连线的长度,确定了所产生的磁场的拓扑分形面;(4) 发现在零点连线附近存在低杂波频率的电磁振荡,这为磁重联过程中可能的电子加速、加热机制提供了观测基础.  相似文献   

6.
Based upon the observational data of the fast magnetic reconnection in the nearly collisionless magnetotail and the particle in cell (PIC)simulations on the electron acceleration in the reconnecting current sheet with guide magnetic field,we self consistently solved one dimension Vlasov equation with the magnetotail parameters and realistic mass ratio to explore the relationship between the anomalous resistivity and the induced electric field.As compared with theoretic formula for the current driven ion-acoustic and Buneman anomalous resistivity,the anomalous resistivity may result from the ion acoustic instability for small reconnecting electric field and the Buneman instability for large reconnecting electric field.The discrepancy between the theoretic results and numerical simulations may be caused by the high frequency instability that results from the deviation of electron distribution from Maxwellian one.These results are consistent with the early experimental results and favorable for the fast reconnection to take place.  相似文献   

7.
Kang W  Stormer HL  Pfeiffer LN  Baldwin KW  West KW 《Nature》2000,403(6765):59-61
The edge of a two-dimensional electron system in a magnetic field consists of one-dimensional channels that arise from the confining electric field at the edge of the system. The crossed electric and magnetic fields cause electrons to drift parallel to the sample boundary, creating a chiral current that travels along the edge in only one direction. In an ideal two-dimensional electron system in the quantum Hall regime, all the current flows along the edge. Quantization of the Hall resistance arises from occupation of N one-dimensional edge channels, each contributing a conductance of e2/h. Here we report differential conductance measurements, in the integer quantum Hall regime, of tunnelling between the edges of a pair of two-dimensional electron systems that are separated by an atomically precise, high-quality, tunnel barrier. The resultant interaction between the edge states leads to the formation of new energy gaps and an intriguing dispersion relation for electrons travelling along the barrier: for example, we see a persistent conductance peak at zero bias voltage and an absence of tunnelling features due to electron spin. These features are unexpected and are not consistent with a model of weakly interacting edge states. Remnant disorder along the barrier and charge screening may each play a role, although detailed numerical studies will be required to elucidate these effects.  相似文献   

8.
Magnetic reconnection in a current sheet converts magnetic energy into particle energy, a process that is important in many laboratory, space and astrophysical contexts. It is not known at present whether reconnection is fundamentally a process that can occur over an extended region in space or whether it is patchy and unpredictable in nature. Frequent reports of small-scale flux ropes and flow channels associated with reconnection in the Earth's magnetosphere raise the possibility that reconnection is intrinsically patchy, with each reconnection X-line (the line along which oppositely directed magnetic field lines reconnect) extending at most a few Earth radii (R(E)), even though the associated current sheets span many tens or hundreds of R(E). Here we report three-spacecraft observations of accelerated flow associated with reconnection in a current sheet embedded in the solar wind flow, where the reconnection X-line extended at least 390R(E) (or 2.5 x 10(6) km). Observations of this and 27 similar events imply that reconnection is fundamentally a large-scale process. Patchy reconnection observed in the Earth's magnetosphere is therefore likely to be a geophysical effect associated with fluctuating boundary conditions, rather than a fundamental property of reconnection. Our observations also reveal, surprisingly, that reconnection can operate in a quasi-steady-state manner even when undriven by the external flow.  相似文献   

9.
Kato Y  Myers RC  Gossard AC  Awschalom DD 《Nature》2004,427(6969):50-53
A consequence of relativity is that in the presence of an electric field, the spin and momentum states of an electron can be coupled; this is known as spin-orbit coupling. Such an interaction opens a pathway to the manipulation of electron spins within non-magnetic semiconductors, in the absence of applied magnetic fields. This interaction has implications for spin-based quantum information processing and spintronics, forming the basis of various device proposals. For example, the concept of spin field-effect transistors is based on spin precession due to the spin-orbit coupling. Most studies, however, focus on non-spin-selective electrical measurements in quantum structures. Here we report the direct measurement of coherent electron spin precession in zero magnetic field as the electrons drift in response to an applied electric field. We use ultrafast optical techniques to spatiotemporally resolve spin dynamics in strained gallium arsenide and indium gallium arsenide epitaxial layers. Unexpectedly, we observe spin splitting in these simple structures arising from strain in the semiconductor films. The observed effect provides a flexible approach for enabling electrical control over electron spins using strain engineering. Moreover, we exploit this strain-induced field to electrically drive spin resonance with Rabi frequencies of up to approximately 30 MHz.  相似文献   

10.
利用含时密度泛函(Time-Dependent Density Functional Theory,TDDFT)方法在6-311++g**基组水平上研究了外电场对碳原子线前十个激发态特性和能级分布的影响.结果表明不同大小、不同方向的电场对碳原子线激发态和能级分布影响各不相同.其中沿分子轴方向较高的电场对碳原子线能级影响较为明显,影响了电子在分子中的输运,从而对碳原子线伏安特性产生一定的影响.  相似文献   

11.
Electron acceleration from contracting magnetic islands during reconnection   总被引:1,自引:0,他引:1  
Drake JF  Swisdak M  Che H  Shay MA 《Nature》2006,443(7111):553-556
A long-standing problem in the study of space and astrophysical plasmas is to explain the production of energetic electrons as magnetic fields 'reconnect' and release energy. In the Earth's magnetosphere, electron energies reach hundreds of thousands of electron volts (refs 1-3), whereas the typical electron energies associated with large-scale reconnection-driven flows are just a few electron volts. Recent observations further suggest that these energetic particles are produced in the region where the magnetic field reconnects. In solar flares, upwards of 50 per cent of the energy released can appear as energetic electrons. Here we show that electrons gain kinetic energy by reflecting from the ends of the contracting 'magnetic islands' that form as reconnection proceeds. The mechanism is analogous to the increase of energy of a ball reflecting between two converging walls--the ball gains energy with each bounce. The repetitive interaction of electrons with many islands allows large numbers to be efficiently accelerated to high energy. The back pressure of the energetic electrons throttles reconnection so that the electron energy gain is a large fraction of the released magnetic energy. The resultant energy spectra of electrons take the form of power laws with spectral indices that match the magnetospheric observations.  相似文献   

12.
电子回旋共振放电产生的等离子体在微电子工业中材料加工、空间电推进方面有着广泛的应用。为了研究微波等离子体电子回旋共振的放电特性,使电子回旋共振放电产生的等离子体密度和能量转换效率更高,建立了微波等离子体电子回旋共振放电的1D3V模型,描述了带电粒子在外加静磁场、微波场共同作用下的微观运动。结果表明:微波频率为2.45 GHz时,随着静磁场磁感应强度的增加,平均电子能量先持续增大达到峰值,随后又不断地减小,且在0.087 5 T时电子加速效果最明显,结果符合电子的回旋频率公式,验证了该模型的正确性;共振区域内,发现在0.087 5 T磁感应强度下,微波频率为2.45 GHz下拟合的电子速度分布才与微波电场分布趋势相似,说明微波电场推动了电子运动。这为进一步研究微波等离子体放电的粒子模拟-蒙特卡罗碰撞模拟奠定了基础,也为进一步研究微波等离子体源中粒子产生效率及微波等离子体源的物理性质提供了重要参考。  相似文献   

13.
Spin is a fundamental property of all elementary particles. Classically it can be viewed as a tiny magnetic moment, but a measurement of an electron spin along the direction of an external magnetic field can have only two outcomes: parallel or anti-parallel to the field. This discreteness reflects the quantum mechanical nature of spin. Ensembles of many spins have found diverse applications ranging from magnetic resonance imaging to magneto-electronic devices, while individual spins are considered as carriers for quantum information. Read-out of single spin states has been achieved using optical techniques, and is within reach of magnetic resonance force microscopy. However, electrical read-out of single spins has so far remained elusive. Here we demonstrate electrical single-shot measurement of the state of an individual electron spin in a semiconductor quantum dot. We use spin-to-charge conversion of a single electron confined in the dot, and detect the single-electron charge using a quantum point contact; the spin measurement visibility is approximately 65%. Furthermore, we observe very long single-spin energy relaxation times (up to approximately 0.85 ms at a magnetic field of 8 T), which are encouraging for the use of electron spins as carriers of quantum information.  相似文献   

14.
Deng XH  Matsumoto H 《Nature》2001,410(6828):557-560
Magnetic reconnection has a crucial role in a variety of plasma environments in providing a mechanism for the fast release of stored magnetic energy. During reconnection the plasma forms a 'magnetic nozzle', like the nozzle of a hose, and the rate is controlled by how fast plasma can flow out of the nozzle. But the traditional picture of reconnection has been unable to explain satisfactorily the short timescales associated with the energy release, because the flow is mediated by heavy ions with a slow resultant velocity. Recent theoretical work has suggested that the energy release is instead mediated by electrons in waves called 'whistlers', which move much faster for a given perturbation of the magnetic field because of their smaller mass. Moreover, the whistler velocity and associated plasma velocity both increase as the 'nozzle' becomes narrower. A narrower nozzle therefore no longer reduces the total plasma flow-the outflow is independent of the size of the nozzle. Here we report observations demonstrating that reconnection in the magnetosphere is driven by whistlers, in good agreement with the theoretical predictions.  相似文献   

15.
Co/AlO/FeNi三层膜的磁结构特性   总被引:1,自引:0,他引:1  
利用多靶离子束溅射配合振动样品磁性分析技术对Co/AlO/FeNi纳米三层膜进行了分步制备与磁特性研究.分析结果表明,Co膜与FeNi膜的层间耦合强度及类型取决于中间隔离层(铝膜或氧化铝膜)的性能和厚度;垂直样品膜平面的电流输运机制源于电子隧穿和自旋电子流对铁磁层局域磁矩的作用.  相似文献   

16.
Magnetic reconnection is a very important and fundamental plasma process in transferring energy from magnetic field into plasma. Previous theory, numerical simulations and observations mostly concentrate on 2-dimensional (2D) model; however, magnetic reconnection is a 3-dimensional (3D) nonlinear process in nature. The properties of reconnection in 3D and its associated singular structure have not been resolved completely. Here we investigate the structures and charactedstics of null points inside the reconnection diffusion region by introducing the discretized Poincar6 index through Gauss integral and using magnetic field data with high resolution from the four satellites of Cluster mission. We estimate the velocity and trajectory of null points by calculating its position in different times, and compare and discuss the observations with different reconnection models with null points based on characteristics of electric current around null points.  相似文献   

17.
We analyze Double Star TC-1 magnetic field data from July to September in 2004 and find that plas-moids exist in the very near-Earth magnetotail. It is the first time that TC-1 observes the plasmoids inthe magnetotail at X > ?13 RE. According to the difference of the magnetic field structure in plasmoids,we choose two typical cases for our study: the magnetic flux rope on August 6 with the open magneticfield and the magnetic loop on September 14 with the closed magnetic field. Both of the cases are as-sociated with the high speed earthward flow and the magnetic loop is related to a strong substorm. Theions can escape from the magnetic flux rope along its open field line, but the case of the closed mag-netic loop can trap the ions. The earthward flowing plasmoids observed by TC-1 indicate that the mul-tiple X-line magnetic reconnection occurs beyond the distance of X=?10 RE from the earth.  相似文献   

18.
我们基于TRACE卫星上EUV观测,采用三阶迎风紧致格式模拟了1999年8月16日EUV增亮事件。数值模拟结果可以给出这次EUV增亮事件的形成和演化过程的一种可能的解释。重联X点处最初的重联流可能与EUV增亮相对应。合并磁岛产生的高度叠加的抛射流,可能与最初表现为吸收特征随后表现为EUV发射结构的提升物质相对应。双向重联喷流可能与继续沿着似乎开放磁力线向上喷发,或流向太阳表面的提升物质相对应。  相似文献   

19.
To interpret density holes in the solar wind,which are nonlinear structures observed by Cluster and Double Star,we propose an electrostatic ion fluid model.We derive the Sagdeev potential from the magnetohydrodynamic(MHD)equations and study the characteristics of nonlinear structures in our model.The results show that density depletions(or holes)can develop from linear ion acoustic waves or ion cyclotron waves in space plasmas when parameters such as Mach number,initial electric field and ratio of ion to electron temperature satisfy certain conditions.In our model,the relative density depletion(or density holes)is from 0 to 1, and the time duration of density holes is from 2 s to more than 98 s.These are in good agreement with the observations by Cluster and Double Star in the solar wind.Our model also shows that the density holes should be accompanied by bipolar electric field solitary structures,which have also been observed by Cluster in the solar wind.  相似文献   

20.
There is much recent interest in exploiting the spin of conduction electrons in semiconductor heterostructures together with their charge to realize new device concepts. Electrical currents are usually generated by electric or magnetic fields, or by gradients of, for example, carrier concentration or temperature. The electron spin in a spin-polarized electron gas can, in principle, also drive an electrical current, even at room temperature, if some general symmetry requirements are met. Here we demonstrate such a 'spin-galvanic' effect in semiconductor heterostructures, induced by a non-equilibrium, but uniform population of electron spins. The microscopic origin for this effect is that the two electronic sub-bands for spin-up and spin-down electrons are shifted in momentum space and, although the electron distribution in each sub-band is symmetric, there is an inherent asymmetry in the spin-flip scattering events between the two sub-bands. The resulting current flow has been detected by applying a magnetic field to rotate an optically oriented non-equilibrium spin polarization in the direction of the sample plane. In contrast to previous experiments, where spin-polarized currents were driven by electric fields in semiconductor, we have here the complementary situation where electron spins drive a current without the need of an external electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号