共查询到20条相似文献,搜索用时 15 毫秒
1.
建立了一类具有潜伏期和双线性发生率的SEIR传染病模型,得到疾病绝灭与否的阈值R0.证明了当R01时,模型惟一的无病平衡是全局渐近稳定的,疾病最终绝灭;当R01时,模型的地方病平衡点是全局渐近稳定,疾病将持续. 相似文献
2.
借助微分方程定性与稳定性理论构造适当的Liapunov函数,对一类介于SIS和SIR间传播的具有变免疫力和常数输入的传染病模型进行讨论.对具种群规模制约的一般接触率,比较了种群在有无染病者输入时系统动力学行为的异同点,得到了地方病平衡点全局渐近稳定的充分条件. 相似文献
3.
讨论了一类具有脉冲接种和非线性接触的SIRS传染病模型,利用F loquet和小振幅扰动理论,证明了无病周期解在一定条件下该模型是全局渐近稳定的. 相似文献
4.
针对一类只在种群的成年阶段中传播的传染病,建立了分阶段结构的传染病模型. 通过讨论找到了各类平衡点存在的阈值条件,并研究了各平衡点的全局稳定性. 相似文献
5.
研究一类具有非线性传染率和预防接种的SEIR传染病模型动力学性质,综合利用LaSalle不变集原理、Lyapunov函数、Routh-Hurwitz判据、微分方程轨道稳定和复合矩阵的相关理论,获得保证无病平衡点和地方病平衡点全局渐近稳定的阀值条件,以及一些新结果. 相似文献
6.
研究了具有指数出生和标准发生率的SEIR和SEIS组合传染病模型,给出了疾病流行与否的阈值并讨论了平衡点的存在性.在考虑因病死亡率的条件下,利用微分方程稳定性理论及定性分析的方法得到了无病平衡点的全局渐近稳定性;当不考虑因病死亡率时,用自治收敛定理证明了地方病平衡点的全局渐近稳定性. 相似文献
7.
研究了一类具有连续接种免疫的非线性自治微分系统SEIR传染病模型,得到疾病绝灭与否的阈值R0,无病平衡点以及惟一的地方病平衡点,证明了无病平衡点、地方病平衡点稳定性. 相似文献
8.
讨论了一类具有接触率与总人口有关,免疫接种和垂直传染的SIR传染病模型.确定了各种平衡点的阈值,当阈值小于1时,无病平衡点是全局渐近稳定的;当阈值在一些情况下大于1时,地方平衡点是全局渐近稳定的. 相似文献
9.
针对只在种群中的幼年人群中传播,而在成年人群中很少或不传播的流行病,建立了分年龄阶段的标准发生率的S1I1S1S2模型.讨论了模型无病平衡点和地方病平衡点的存在性和全局稳定性.给出疾病流行与否的阈值. 相似文献
10.
文章讨论了采取预防接种的非终身免疫传染病的数学模型,得到了决定疾病流行与否的阈值R0,当R0≤1时,仅存在无病平衡点Eo,是全局渐近稳定的;当Ro〉1时,存在两个平衡点,其中无病平衡点Eo不稳定,地方病平衡点E全局渐近稳定。 相似文献
11.
徐娟 《高等函授学报(自然科学版)》2011,(5):61-62
根据传染病在不同阶段的特点以及染病者相互可以转化的特性,建立了一类具有标准发生率的SIR传染病模型。借助再生矩阵求得了模型的基本再生数,并讨论了平衡点的存在性和全局稳定性。 相似文献
12.
研究了带有接种和分组的传染病扩散模型.利用常微分方程定性和稳定性方法,讨论了无病平衡点的稳定性以及地方病平衡点的稳定性,给出了平衡点稳定与否的阈值条件.另外,利用能量不等式证明了正常数平衡解的唯一性. 相似文献
13.
讨论了一类含潜伏期,染病者有因病死亡且具有双线性传染率的SEIR传染病模型,得到基本再生数R0.当R0≤1时,系统仅存在无病平衡点且局部渐近稳定;当R0>1时,系统存在惟一的地方病平衡点,且是局部渐近稳定的. 相似文献
14.
讨论了一类接触率与总人口有关,免疫接种和垂直传染因素对传染病流行影响的SIRS模型.确定了各种平衡点的阈值,当阈值小于1时,无病平衡点是全局渐近稳定的;当阈值大于1时,地方平衡点是全局渐近稳定的. 相似文献
15.
杨友社 《空军工程大学学报(自然科学版)》2011,(4):82-86
通过对经典的SIS传染病模引入周期性变化的疾病传播参数,建立了一类具有周期性变化参数的SIS传染病模型。借助微分方程比较定理和稳定性理论,对其进行定性分析,得到了决定疾病灭绝与否以及模型动力学形态的阈值。在该阈值之下,模型的无病周期解是全局渐近稳定的,这意味着疾病最终灭绝;在该阈值之上,模型的无病周期解是不稳定的,同时模型还存在全局渐近稳定的地方病周期解,这意味着疾病将持续存在于种群之中,并且染病者的数量呈周期性变化。 相似文献
16.
研究了一类含时滞具有垂直传染的SIR传染病模型,得到了系统的基本再生数R0,利用特征理论分析了系统的局部渐近稳定性,证明了R0〉1时系统是持久的;通过构造Lyapunov函数讨论了R0〉1时地方病平衡点的全局渐近稳定性,并且利用比较定理讨论了R0〈1时无病平衡点的全局渐近稳定性;最后利用MATLAB软件分析了时滞在SI... 相似文献
17.
针对COVID-19的特点,建立了一类潜伏期与染病期均传染且具有病毒变异的SEI1I2QR传染病模型。首先,得到了模型的基本再生数与平衡点,利用Routh-Hurwitz判据、Lyapunov函数及LaSalle不变集原理证明了各类平衡点的全局稳定性。其次,选取印度的COVID-19累计病例数,对模型的参数进行了估计,并对疫情发展趋势进行了数值模拟。最后,对部分参数进行了敏感性分析,结果表明,易感者与潜伏者的有效接触率、易感者与病毒变异前的染病者的有效接触率和基本再生数之间存在强相关性关系,降低易感者与染病者的有效接触率可以有效控制疫情的进一步蔓延。 相似文献
18.
一类具有阶段结构的传染病模型 总被引:8,自引:3,他引:8
研究了一类具有阶段结构的SIS成年传染病模型的渐近性态,讨论了无病平衡点与地方病平衡点的存在性和局部渐近稳定性及无病平衡点的全局渐近稳定性,找到了种群一致持续生存的条件. 相似文献
19.
本文讨论了一类具有脉冲接种和阶段传染的SIVR传染病模型,利用不动点定理证明了该模型无病周期解的存在性,利用Floquet乘子理论和脉冲微分方程比较定理得到了无病周期解全局渐近稳定的充分条件. 相似文献
20.
李录苹 《山西师范大学学报:自然科学版》2013,(1):10-14
建立并分析了一个具有脉冲出生和脉冲接种的传染病模型,根据脉冲微分方程理论得到了无病周期解局部渐近稳定的和全局稳定充分条件. 相似文献