首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 73 毫秒
1.
介绍了增量学习算法、序列最小优化算法、加权支持向量机算法等几种应用于大型数据库,在加快训练速度、降低分类错误率等方面有改进的SVM流行算法.在分析各种算法优缺点的基础上,提出了在线性样本训练、超大规模样本下满足KKT条件的算法是SVM算法的发展方向的观点.  相似文献   

2.
一种基于AdaBoost的SVM分类器   总被引:6,自引:0,他引:6       下载免费PDF全文
针对AdaBoost的分量分类器的分类精度和差异性互为矛盾、以至于该矛盾的存在降低了AdaBoost算法的分类精度和泛化性的问题,提出了一种变σ-AdaBoostRBFSVM算法,通过根据训练样本调整各个分量分类器的核函数参数值,使分量分类器在精度和差异性之间达到一定的平衡,从而提高了集成分类器的分类精度和泛化性。对标准数据集的分类实验结果表明了算法的有效性。  相似文献   

3.
集成学习是机器学习的重要研究方向之一,SVM集成近年来已经受到国内外很多从事机器学习、统计学习的研究者们的重视,并使得该领域成为了一个相当活跃的研究热点。对近年来SVM集成的研究与应用进行了综述,讨论了SVM集成需要解决的基本问题;讨论分析了构造差异性大的集成成员SVM的方法、有效的集成结论生成方法、SVM集成的典型应用;指出了目前存在的问题、以及几个重要的研究方向。  相似文献   

4.
基于主成份分析的Bagging集成学习方法   总被引:1,自引:0,他引:1       下载免费PDF全文
机器学习中数据集的冗余特征会影响学习器的泛化能力,一些流行方法如支持向量机和集成学习也难免于此.研究了利用主成份分析进行特征变换对Bagging集成学习算法的影响,提出一种称为PCA—Bagging的算法,并与其它算法比如单个支持向量机、支持向量机Bagging集成、带有特征变换的单个支持向量机等进行了性能比较.在多个UCI标准数据集上的实验表明PCA—Bagging算法具有更好的性能,这说明即使是泛化能力很强的集成学习方法其学习的数据也需要进行适当的特征变换。  相似文献   

5.
为提高支持向量机集成的泛化性能,提出一种基于独立成分分析法的特征Bagging支持向量机集成方法,删除了冗余特征.该方法从得到的独立成分特征空间中提取特征子空间,避免了直接从原特征空间中随机选择特征子空间而导致的对特征依赖或相关性的破坏,提高了个体支持向量机的性能,保证了个体支持向量机之间的差异度.在UCI和Stat-Log数据集合上的仿真实验表明,该方法具有更好的泛化性能.  相似文献   

6.
网页分类需要使用标记网页对分类算法进行训练,然而,对网页进行标记的过程既费时又费力.随着web的快速发展,获得未标记网页已经变得相对容易.为了有效地利用未标记网页来提高网页分类的性能,提出了一种基于集成学习的网页分类算法,迭代运行支持向量机、中心分类器和朴素贝叶斯分类器,并对各分类器的预测进行集成,不断地从未标记集中对网页进行标记后用于训练.实验结果表明.提出的算法有效地提高了网页分类的性能.  相似文献   

7.
一种快速SVM学习算法   总被引:3,自引:0,他引:3  
介绍了支持向量机用于解决模式分类问题的基本原理和学习算法,在对SMO算法进行深入分析的基础上,提出了一种改进的分解算法GD,较好地解决了训练过程中子问题的求解复杂度和迭代次数及效率之间的矛盾。实验表明,该算法能够大大缩短非线性核支持向量机的训练时间。  相似文献   

8.
【目的】心力衰竭简称心衰,是一种复杂的临床综合征,具有高发病率、高死亡率和预后效果不佳等显著特点,是各类心脏疾病发展的终末期,严重危害人类健康。因此,对心衰患者进行早期的预后评估研究至关重要,可以最大程度地帮助患者生存。【方法】提出一种基于多核支持向量机(multi kernel support vector machine, MK-SVM)和自适应提升算法(adaptive boosting, AdaBoost)的心力衰竭死亡率评估模型(MK-SVM-AdaBoost).该算法利用MK-SVM将特征映射到高维空间,并依据AdaBoost算法将基本分类器进行集成,实现死亡率的精确预测。同时,将合成少数过采样技术(synthetic minority oversampling technique, SMOTE)和Tomek links欠采样技术相结合的混合抽样方法引入到预测模型中,减轻不平衡数据集对模型性能的影响。【结果】在收集于白求恩医院的小型心衰数据集上进行心衰患者30 d内死亡率预测实验。实验结果表明,MK-SVM-AdaBoost模型的准确率和召回率分别达到了85.63%和86....  相似文献   

9.
王国庆 《科技信息》2012,(28):257-259
本文结合遗传算法参数优化方法,提出了基于AdaBoost集成支持向量机(SupportVectorMachine或SVM)算法,建立了基于AdaBoost集成SVM预测模型。通过Sinc函数仿真数据,分析了基于AdaBoost的集成支持向量机的预测性能。结果表明,基于Ada~Boost集成预测模型的预测相对平均误差达到1.31%,而SVM预测相对平均误差为279%,提升幅度达到53%,说明集成SVM预测模型具有很高的预测精度。通过对Sinc函数加入不同含量的噪声,发现与改进前的集成SVM算法相比,本文提出的算法具有更强的抗干扰能力。应用该算法,对轴承疲劳寿命实验中轴承振动信号特征量趋势进行预测,结果表明其14步预测的相对平均误差为027%,预测结果良好。  相似文献   

10.
对景区等公共区域进行人群密度估计对于保障人群安全和社会稳定具有重要意义。在景区中由于光照变化、相机高度角度变化以及行人遮挡的问题,现有的方法难以做出准确的估计。为此提出了一种结合支持向量机回归(SVR)进行集成学习的方法来进行人群密度估计。方法首先以人的头部宽度作为参照,对场景进行多层次的分块;然后采用第一层SVR模型,对从子图像块提取出的三种特征进行粗预测,将预测结果作为新的特征,并对其使用第二层SVR模型进行细预测,将所有子图像的预测结果相加;最后根据不同景区场景设定的人数分级进行密度估计。实验结果表明,方法在景区多个场景分类准确率达到85%以上,是一种有效且在类似场景有较强扩展性的人群密度估计算法。  相似文献   

11.
用户信用卡违约预测任务有助于银行等金融机构平衡经济风险与经济利益,对于银行信用卡业务的风险管控具有重要作用。针对用户信用卡违约预测问题,提出了一种基于集成学习的预测模型,有异于传统集成学习中的弱学习器。该模型采用集成模型和神经网络模型作为基学习器,从而提升模型整体的预测效果。首先通过预处理提取用户信用卡数据集的相关特征,然后分别采用优化后的决策树、随机森林、GBDT、XGBoost、CatBoost和SPE六种机器学习模型与神经网络模型进行并行训练和预测,最后通过加权软投票法集成基学习器结果并输出最终预测结果。结果表明,相对于基学习器,该模型在各项评估指标上均有所提升,且拥有更好的模型泛化能力。  相似文献   

12.
为解决基于内容的图像检索中训练集样本过小问题,本文提出一种结合相关反馈和支持向量机的主动学习算法,首先计算未标注样本到分类超平面的距离以及与当前训练集中样本的余弦距离和,然后取具有总的最大余弦距离同时到超平面距离最短的样本加入训练集,通过增加最具信息的样本到训练集,使得分类器可通过少量反馈次数而快速达到较高的准确性.试验表明,本文算法能有效提高分类器的分类精度和泛化能力,在减少评价样本数量的前提下,可快速收敛于用户定义的目标查询概念.  相似文献   

13.
提出了一种基于文化算法的神经网络集成方法,在训练好个体神经网络后,使用文化算法选择部分网络来组成神经网络集成.该方法将遗传算法纳入文化算法框架,充分利用优秀个体的经验知识来指导算法的搜索过程,从而提高了算法的搜索速度.实验结果表明,使用文化算法进行集成,能够提高构造差异性大的神经网络集成的效率.  相似文献   

14.
提出了一个强化学习系统中模糊自适应控制器网络结构及其有关算法的改进.并在此基础上给出了二阶欠阻尼系统和强非线性系统的强化学习控制仿真结果.仿真结果表明,基于强化学习的模糊自适应控制器可以对一类复杂系统实现自学习控制,达到令人满意的控制精度.最后,作者还对进一步研究的问题进行了探讨.  相似文献   

15.
本文研究了遗传处在应搜索策略在专家系统的误获问题上的适用性。  相似文献   

16.
提出一种基于本体的适应性学习系统,在不改变现有E-Learning系统学习模式的基础上,为学习者提供一个基于广域资源共享的适应性课程学习环境,从而解决现有E-Learning系统中网络课程缺乏个性化支持、已有优质网络教育资源较难重用,以及现有的适应性教学系统研究成果不能普及应用等问题.最后构建了一个系统原型,并提供了适应性学习处理过程.  相似文献   

17.
Support vector machines (SVMs) have been introduced as effective methods for solving classification problems. However, due to some limitations in practical applications, their generalization performance is sometimes far from the expected level. Therefore, it is meaningful to study SVM ensemble learning. In this paper, a novel genetic algorithm based ensemble learning method, namely Direct Genetic Ensemble (DGE), is proposed. DGE adopts the predictive accuracy of ensemble as the fitness function and searches a good ensemble from the ensemble space. In essence, DGE is also a selective ensemble learning method because the base classifiers of the ensemble are selected according to the solution of genetic algorithm. In comparison with other ensemble learning methods, DGE works on a higher level and is more direct. Different strategies of constructing diverse base classifiers can be utilized in DGE. Experimental results show that SVM ensembles constructed by DGE can achieve better performance than single SVMs, hagged and boosted SVM ensembles. In addition, some valuable conclusions are obtained.  相似文献   

18.
机器学习研究   总被引:28,自引:15,他引:28  
由于Internet的使用,不分时间与地域地获得信息已成为现实,但是,如何有效利用这些信息,并使用这些信息提高生产率成为迫切需要解决的问题.机器学习是解决这类问题的有效方法之一.在此将对目前机器学习研究的主要趋势、理论与技术以及存在的问题,根据作者的研究经验进行综述,以便引起研究者的注意.  相似文献   

19.
首先,简述了相对论性热力学理论,主要介绍了系统的总能量应为系统有序运动能量与焓之和,系统的总能量与系统3维动量构成4维矢量以及Lorentz协变的Maxwell关系,最后在此基础上详细讨论了相对论统计系综理论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号