首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
可倾瓦推力轴承启动过程瞬态热效应的实验研究   总被引:1,自引:0,他引:1  
实验研究了可倾瓦推力轴承在 2 30 0~ 51 0 0r/min的名义转速范围内时 ,空载快速启动及慢速启动过程中推力轴承油膜温度和油膜厚度的瞬态变化规律 .实验表明 ,在启动过程中 ,油膜温度随转速的提高而升高 ,不同的升速时间对油膜温度的影响也不同 ,油膜的厚度也随转速的提高而升高 .  相似文献   

2.
为推力轴承试验台搭建了轴承性能参数数据采集系统,可测量推力轴承的动态油膜压力、温度和轴承载荷数据.通过实验研究了巴氏合金瓦推力轴承启动运行过程,得到了油膜温度和压力的变化规律,探讨了不同载荷和不同转速下对推力轴承油膜温度和压力的影响.  相似文献   

3.
本文详细讨论了中间线支撑(支撑位置为0.5L)可倾瓦推力轴承的工作温度随轴承转速、载荷及流量变化而变化的关系。本文提供了这种轴承在极限支撑位置上轴承热效应的实验数据及分析结果。它也是[7]文的姊妹篇。试验证明,高速低载荷时以推力盘的工作温度近似油膜温度较好,而在低速及高载荷高速时仍应以轴瓦最高温度做近似估计。同时还表明,正确地估计轴承油膜的温升需正确确定油膜的进油口温度,而进油口处的温度将同时受到油腔温度,推力盘温度和热油传递作用的影响。  相似文献   

4.
发动机主轴承EHD分析研究   总被引:1,自引:0,他引:1  
建立了主轴承EHD(弹性流体动力润滑)的有限元仿真模型,基于有限元法与有限差分法对不同转速下主轴承润滑特性进行了仿真,研究了不同转速下内燃机主轴承EHD载荷、弯矩、油膜厚度、油膜压力、摩擦功耗以及机油流量的变化规律。研究结果表明:随着转速的升高,最大载荷下降,平均载荷上升,最小油膜厚度值增加,油膜压力减小,液动摩擦功耗逐升高,粗糙接触摩擦功耗减小,机油流量增加。  相似文献   

5.
本文提供了中间线支撑可倾瓦推力轴承在较广泛的工况下轴瓦廓形的实验研究数据。详细研究了轴瓦随载荷、轴承转速和润滑油流量等因素变化而变化的表现形态;进而得出了中间支撑的瓦块能形成动压油膜的试验结果。试验在英国谢菲尔德大学摩擦学试验室的150mm可倾瓦推力轴承实验台上完成。  相似文献   

6.
针对船舶可倾瓦推力轴承在实际运行过程中存在的轴系倾斜问题,建立倾斜状态下可倾瓦推力轴承热弹流体动压润滑计算模型,研究倾斜状态对可倾瓦推力轴承静动特性的影响。提出了以倾斜角和轴线投影角两个参数来表征倾斜状态的数学模型;联合热弹流体动压润滑模型和轴向油膜刚度、阻尼系数求解模型,全过程求解可倾瓦推力轴承静动特性。静态性能参数包括载荷、最小油膜厚度、最大油膜压力、最高油膜温度;动态性能参数包括轴向油膜刚度和阻尼系数。结果表明:轴线倾斜使每块瓦承受载荷严重不均,造成各块瓦巨大的性能差异;倾斜角增大使瓦所承受载荷、油膜压力和油膜温度增加,油膜厚度减小,且外载荷越大变化越显著;轴线投影角所在轴瓦承受载荷最大,当轴线投影角在支点附近时,静态性能参数皆有极值存在;轴线投影角在距瓦进油边31°的位置时推力轴承轴向油膜刚度和阻尼系数有最大值。研究结果可为倾斜状态下可倾瓦推力轴承可靠性的提高提供参考。  相似文献   

7.
针对实际工况下圆柱滚子轴承接触区润滑油膜薄而窄难以测量的问题,利用基于等效弹簧模型的超声测量原理进行研究,设计并搭建了专用圆柱滚子弹流润滑油膜厚度测量实验台,对超声测量圆柱滚子轴承润滑油膜厚度进行实验研究。通过该实验台来模拟圆柱滚子在实际工况下的运行状态,高频测量探头安装在5自由度微动平台上以便调整合适的测量位置;在轴承保持架上贴一个反光片作为每个工况下开始测量的触发信号,保证每次测量同一个滚子;使用温度传感器实时测量实验轴承温度,考虑温度对润滑油的影响。实验所能测量的最大转速取决于重复频率,重复频率不足会导致较大的测量误差;超声探头聚焦直径区域内的平均效应导致无法测量比聚焦区域更小的油膜分布信息。在最高转速600r/min、最大载荷16kN的范围内成功测量到了圆柱滚子轴承在实际工况下0.2~1.2μm的膜厚。实验结果表明:最小膜厚会随转速的升高而增大,随载荷的增大而减小,与理论计算结果拟合程度较高,证明了该方法在实际工况下测量圆柱滚子轴承油膜厚度的有效性和准确性。  相似文献   

8.
深浅腔动静压轴承油膜特性   总被引:1,自引:0,他引:1  
以用于某高精度数控车床主轴部件的深浅腔液体动静压轴承为研究对象,在对其进行理论建模与分析的基础上,采用计算流体力学软件对深浅腔动静压轴承油膜特性进行分析.分析不同的转速、供油压力、偏心率、油膜厚度和深腔夹角等因素对油膜承载力、进油孔流量和油膜温升的影响.结果表明:进油孔流量随主轴转速的增加先增大后减小,随主轴偏心率的增加逐渐减小;油膜温度随外部供油压力的增加逐渐减小且趋于平缓;油膜厚度在0.03mm左右时承载力和温升最合适;在深腔夹角为10°时,油膜的动压效果最明显,油膜承载能力最强.  相似文献   

9.
利用CFD软件分析了不同油膜厚度、转速和供油压力下袋式轴承的油膜特性及其对汽轮机振动的影响.利用UG软件建立袋式轴承的物理模型,导入Workbench的Mesh软件中进行网格划分,计算不同油膜厚度、转速和供油压力下的袋式轴承的油膜压力分布,分析油膜特性对汽轮机转子稳定性的影响.结果表明:油膜厚度、转速、供油压力对袋式轴承的油膜特性及对旋转机械转子稳定性具有重要作用.转速越大,油膜稳定性越好,汽轮机转子运行越稳定;在最佳的油膜厚度为0.06mm及0.07mm时使汽轮机能安全稳定的运行,并且供油压力在0.1~0.2MPa时,增大供油压力可以明显提升轴承油膜的承载能力,有利于轴承的稳定.  相似文献   

10.
基于计算流体动力学(CFD)理论,针对某水润滑静压推力轴承建立了不同的水膜模型,分析水膜厚度与轴承承载能力的关系,以及水腔厚度、进水孔直径、轴承转速对轴承承载能力的影响.结果表明:随水膜厚度的增加,静压推力轴承承载力显著减小;随水腔厚度或进水孔直径的增加,轴承承载力先增大后基本不变;水腔厚度越大,使承载能力最大的进水孔直径越小;随转速增大,轴承端泄增强,且承载能力明显下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号