首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
含功能性单体的苯/丙乳液的聚合稳定性   总被引:8,自引:3,他引:8  
采用乳液聚合工艺,以过硫酸钾为引发剂,合成了含功能性单体甲基丙烯酸羟乙酯和丙烯酸的苯乙烯/丙烯酸丁酯共聚乳液,系统研究了乳化体系、引发体系、含功能基单体含量、聚合工艺和聚合温度等对乳液聚合过程稳定性的影响,发现聚合温度降低,采用半连续聚合工艺以及适当提高乳化剂的浓度均有利于乳液聚合反应的稳定性提高。  相似文献   

2.
微乳液的制备及稳定性   总被引:3,自引:0,他引:3  
采用十二烷基硫酸钠分别与十六醇、十六烷和十二烷组成的乳化体系、以丙烯酸丁酯分别与苯乙烯、甲基丙烯酸甲酯和丙烯腈为混合单体,制备了一系列微乳液,测定了乳液电导值,水相残留乳化剂浓度,单体液滴大小,离心稳定性,静置稳定性,讨论了乳化剂种类,用量和微乳化处理方式对乳液稳定性的影响。  相似文献   

3.
以甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、甲基丙烯酸六氟丁酯(HFMA)等为主要原料,采用预乳化种子乳液聚合法制备了含氟丙烯酸酯无皂乳液,考察了可聚合乳化剂烯丙氧基壬基酚聚氧乙烯(10)醚硫酸铵(DNS-86)和HFMA的用量对无皂乳液的电解质稳定性和涂膜耐水性的影响。利用傅立叶红外光谱(FT-IR)、差示量热扫描仪(DSC)及热重分析(TG)对氟丙乳液涂膜进行了表征。结果表明:与传统乳液聚合得到的乳液及相应的涂膜相比,无皂乳液的耐电解质性能和涂膜的耐水性都有一定的提高,含氟单体有效地参与了聚合,涂膜的疏水性大大增强,耐热性显著提高。  相似文献   

4.
采用半连续种子乳液聚合技术合成了含甲基丙烯酸缩水甘油酯(GMA)、甲基丙烯酸羟乙酯(HEMA)和甲基丙烯酸二甲氨基乙酯(DMAEMA)的室温自交联乳液(GHD),研究了聚合工艺和配方对MMA_BA_HEMA_DMAEMA体系的聚合过程稳定性的影响.除了聚合过程中形成的水溶性聚合物的架桥凝聚作用之外,反应性官能团间的交联凝聚作用对GHD乳液聚合稳定性有重要影响.增加HEMA和DMAEMA用量对该聚合过程的稳定性没有明显影响.  相似文献   

5.
 Pickering乳液由于具有独特的界面粒子膜、环境响应性等优势,在化工新型材料和催化材料领域获得广泛应用。本文对Pickering乳液稳定机理进行综述,指出影响Pickering乳液稳定性的3个关键因子分别为界面张力、三相接触角和粒子粒径,阐明了固体颗粒表面润湿性、固体颗粒浓度、水相电解质、水相pH值、油水相体积比等因素通过固体颗粒界面膜理论和三维黏弹粒子网络机理对Pickering乳液稳定性的影响。  相似文献   

6.
对饥饿反应器中甲基丙烯酸羟乙酯(HEMA)聚合行为进行了研究,建立了聚合动力学模型,优化回归了模型参数。模型中考虑了由于初级自由基与单体反应生成单体自由基时所消耗的单体量;考虑了高温下HEMA聚合时的解聚作用;考虑了体系中的凝胶效应,并将链终止速率常数与凝胶效应联系起来。  相似文献   

7.
乳液聚合制备氨基硅油乳液及微乳液的工艺探讨   总被引:1,自引:0,他引:1  
以简化设备及药品为目的,以D4、N-β-氨乙基-γ-氨丙基甲基二甲氧基硅烷等为原料,用乳液聚合方法,通过改变工艺条件制备得到氨值0.15~0.30 mmol/g,pH值6.0~7.0,粒径分布10~45μm的乳液及粒径分布10~35 nm的微乳液.确定了乳液制备的有利条件:反应温度70~80℃,降低初始水相含量,高速搅拌条件下加快油相滴加速率;微乳液制备的有利条件:反应温度80~90℃,高速搅拌条件下延长均质后的油相滴加时间.考察了工艺条件的改变对乳液及微乳液的透光率曲线及转化率曲线的影响;测定了粒径分布并将破乳离心所得氨基硅油进行红外表征.结果表明,无需增加药品,通过工艺条件的改变可以成功得到氨基硅油乳液及微乳液.  相似文献   

8.
自交联型丙烯酸酯共聚物乳液稳定性的研究   总被引:1,自引:0,他引:1  
采用种子乳液聚合法合成自交联型丙烯酸酯四元共聚物乳液。对这类乳液的耐电解质、耐碱和机械离心稳定性进行了研究。并测定了乳液的电导度,考察了聚合方式、活性单体种类及其用量对聚合物乳液稳定性的影响。  相似文献   

9.
研究了丙烯酸甲酯(MA)对聚乙烯醇为乳化剂的氯丁二烯和甲基丙烯酸乳液共聚合的影响。结果表明,共聚单体MA的加入量为30%时,氯丁胶乳制备过程中体系的黏度从约1.36Pa·s降低到0.10Pa·s左右;乳胶粒的平均粒径随着MA含量的增加逐渐减小。根据聚合过程中体系黏度和粒径变化规律提出在MA存在下,分散聚合机理占主导地位。  相似文献   

10.
11.
分别采用电导率仪、粘度计和折射仪测定了不同类型微乳液的结构变化.结果表明,在固定甲基丙烯酸甲酯(MMA)/丙烯酸(AA)混合单体量的情况下,随着水相含量的增加,体系的电导率、粘度和折射率发生明显变化,体系由反相微乳液经双连续型微乳液逐渐转变为正相微乳液.对微乳液的粒度分析表明,油相含量较低时,正相微乳液体系中的液滴可视作溶胀胶束;在反相微乳液中,随着十二烷基硫酸钠水溶液含量的增加,水相液滴粒径明显增大;在MMA/AA/H2O无皂反相微乳液体系中,微乳液的粒子比有皂体系的大.最后,微乳液聚合表明过硫酸钾能够稳定引发正相微乳液聚合,同时Mn3+也可用于引发正相微乳液聚合.  相似文献   

12.
13.
以环氧树脂为交联剂,在室温下实现了对苯丙乳液的交联改性,制得的环氧改性苯丙乳液克服了苯丙乳液的缺点。探讨了影响该乳液性能的因素。  相似文献   

14.
丙烯酸核壳乳液的制备与性能研究   总被引:6,自引:0,他引:6  
采用甲基丙烯酸甲酯,丙烯酸丁酯和丙烯酸为核壳阶段的单体,通过半连续滴加的种子乳液聚合的合成工艺,得到了一种粘度适中,稳定性良好,具有核壳结构的乳液.讨论了聚合工艺,乳化剂及引发剂用量种类,核壳两阶段单体用量比例对乳液聚合工艺和乳液性能的影响.  相似文献   

15.
研究了不同温度(30℃、40℃、50℃)、不同盐水浓度(1%、3%、5%(质量百分数))条件下,阳离子表面活性剂十六烷基三甲基溴化胺(CTAB)/正丁醇—甲基丙烯酸甲酯(MMA)—水(或盐水)拟三元体系三相图,并对甲基丙烯酸甲酯微乳液聚合反应进行了研究。研究表明:(1)随着温度升高,微乳区间增大;(2)盐类物质的加入对甲基丙烯酸甲酯在微乳液中有增溶效应;(3)甲基丙烯酸甲酯微乳液聚合反应速率随着温度升高而增大。  相似文献   

16.
研究了以甲基丙烯酸甲酯(MMA)、苯乙烯(ST)、丙烯酰胺(AM)为原料,采用无乳化剂乳液聚合,合成了阳离子共聚物[P(MMA-ST-AM)]乳液,测定了乳液的稳定性,找到了合成的最佳条件:单体质量配比依次为65/20/15,反应温度为80℃,引发剂用量为0.3g,反应时间为6—8h。将P(MMA-ST-AM)阳离子共聚乳液加到纸浆中,通过对纸张性能的测定,发现乳液用量为1.0%时,纸张抗张强度提高l0.88%、耐折度增加85.71%、撕裂度增加31.42%、环压强度增加27.58%。  相似文献   

17.
油包水微乳液体系的稳定性分析   总被引:1,自引:0,他引:1  
将表面活性剂Tween80和Span80复配,以环己烷为油相制备高度分散、液滴均匀的油包水(W/O)型微乳液.以最大增溶水量为指标,通过目测及测定体系电导率,研究了表面活性剂复配、四种醇类助表面活性剂、温度和盐度等因素对微乳液体系稳定性的影响,探索该微乳液形成的适宜条件.实验结果表明:当复配表面活性剂中Tween80的含量为60%、乙醇作助表面活性剂、助表面活性剂与复配表面活性剂质量比Km=1.0时,可得到作为微反应器的理想微乳液体系;随温度升高,W/O微乳液体系相图的稳定区域减小,盐度对微乳液稳定性的影响减小.  相似文献   

18.
采用单因素法探讨了影响八甲基环四硅氧烷(D4)-丙烯酸酯预乳化液稳定性的因素。实验表明:十二烷基苯磺酸钠(SDBS)/聚乙二醇辛基苯基醚(OP-10)(配比1∶3)复合乳化剂用量为单体质量的6%,10%的PVA1799保护胶体用量为单体质量的30%~40%,体系pH值5~6,乳化温度50℃时,D4-丙烯酸酯预乳化液的稳定性最佳。  相似文献   

19.
采用聚酰胺对环氧树脂进行扩链后并进行阳离子化改性,共混入聚氨酯固化剂,用外加乳化剂进行相反转,制得了环氧聚氨酯乳液,研究了溶剂用量及溶剂配比、改性环氧树脂相对分子质量大小、水溶性及固化剂用量等对乳液黏度和稳定性的影响.实验发现:树脂体系中溶剂量存在一临界值为8.8%(质量分数,下同),当溶剂量高于8.8%时,较难发生相反转,制得的乳液不稳定;当溶剂用量低于8.8%时,能发生相反转,且乳液稳定性好;疏水性的二甲苯部分代替亲水性的乙二醇单丁醚,能显著降低改性环氧树脂的黏度和最终乳液的黏度.当聚酰胺用量为环氧树脂用量的6.0%~6.5%时,中和度达65%,改性环氧树脂水溶性较好;控制固化剂量为改性环氧树脂量的15.0%~20.0%时,制得的乳液稳定性好.  相似文献   

20.
利用界面电泳的方法对聚丙烯酸酯乳 液的稳定性及其影响因素进行了研究,结果表明,聚丙烯酸酯乳液的稳定性依赖于其内在结构,因含量、pH值和交联剂含量,这些影响因素可以用电荷密度及表面积的改变来解释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号