首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
6063铝合金高温流变本构方程   总被引:22,自引:0,他引:22  
采用圆柱试样在G1eeb1e—1500热模拟机上进行高温等温压缩实验,研究了6063铝合金在高温塑性变形过程中流变应力的变化规律.结果表明:应变速率和变形温度的变化强烈地影响6063铝合金流变应力,流变应力随变形温度升高而降低,随应变速率提高而增大,在高应变速率下出现明显的动态软化.  相似文献   

2.
稀土Er对ZK60镁合金变形行为的影响   总被引:1,自引:0,他引:1  
采用Gleeble-1500D热模拟试验机研究了稀土元素Er对ZK60镁合金的热压缩变形行为的影响。通过引入Zener-Hollomon参数和双曲正弦函数构建了ZK60和ZK60-1.0Er镁合金的本构方程,同时采用应变硬化率θ-流变应力σ关系曲线确定动态再结晶发生的临界应力σc值。结果表明:ZK60和ZK60-1.0Er两种镁合金在热压缩变形过程中,随着变形温度T的升高,压缩流变应力σ值均减小;随着应变速率ε?的增加,流变应力σ值均增加。添加稀土元素Er使得ZK60镁合金热压缩变形流变应力σ值和应力指数n值增加,在变形温度为160~320℃时提高了发生动态再结晶的临界应力σc值,稀土相的存在促进了再结晶晶粒的形核,降低了平均变形激活能Qˉ值。  相似文献   

3.
张秋美  侯军才 《科技信息》2011,(15):J0018-J0018
对不同变形量的ZK60镁合金进行不同固溶温度和不同固溶时间的固溶处理,分析ZK60镁合金变形和固溶处理对硬度的影响.结果表明:随变形量的增加,固溶温度的升高和固溶时间的延长,ZK60镁合金的硬度均提高。固溶温度的升高对硬度值的影响最明显,固溶时间次之,挤压变形量对硬度的影响程度最小。  相似文献   

4.
针对涡轮发动机涡轮叶片复杂应力状态下的时效变形问题,以涡轮叶片材料Waspaloy镍基合金为研究对象,开展Waspaloy镍基合金时效处理,完成时效态Waspaloy镍基合金600℃、700℃和750℃准静态高温力学拉伸试验,利用Ludwik和Hollomon经验公式预测Waspaloy镍基合金高温塑性段流变应力,引入平均误差(Er)和均方根误差(RMSE)评价流变应力的预测准确度。结果表明,时效处理后合金的硬度得到有效提升,而其塑性性能有所降低。Waspaloy镍基合金的抗拉强度和延伸率在600℃~750℃区间范围内与加载温度呈负相关关系。Ludwik模型较Hollomon模型有更高的流变应力预测精度,而在高温高应变区域Ludwik模型预测流变应力仍存在较大误差。在Ludwik模型的基础上引入指数项,修正后的Ludwik模型能更好地预测Waspaloy镍基合金高温塑性段的流变应力。  相似文献   

5.
采用Gleeble-1500热/力模拟系统,研究热轧的AZ31镁合金板材在应变速率0.01,0.1,1,5和10 s-1,变形温度473~723 K,预设最大变形量80%条件下的高温塑性变形行为。采用实验得到的真应力-真应变曲线,分析合金流变应力与应变速率、变形温度之间的关系,计算合金高温变形的材料参数和激活能;用Zener-Hollomon参数法建立合金高温变形的本构关系,并比较实测应力与计算得到的应力。研究结果表明:AZ31镁合金高温变形时受应变速率的影响较大,应变速率小于1 s-1时(573~723 K),合金的真应变接近100%,但当应变速率大于5 s-1时,实验温度范围内合金的真应变都小于60%。AZ31镁合金高温变形的流变应力-应变速率-变形温度的关系可用双曲正弦函数描述,激活能随应变速率和变形温度的提高,从110.4 kJ/mol升高到163.2 kJ/mol。实验获得的AZ31镁合金应力-应变本构方程的计算结果与实验结果较吻合。  相似文献   

6.
通过对Mg-6.0Zn-1.2Y、Mg-6.0Zn-0.6Zr-1.0Y变形镁合金挤压态及经过各种热处理的试样的显微纽织分析及力学性能研究,探讨了微量稀土元素Y在ZK60合金中的存在形式和作用机理对该合金组织与力学性能的影响.结果表明,稀土元素Y能使变形镁合金ZK60晶粒明显得到细化,晶界也变细;当添加的稀土Y含量为1.0%wt时,大量的Y和Zn在晶界富集,Y-Zn相颗粒变大,导致其强度下降,而延伸率增加.  相似文献   

7.
Al-Mg-Sc合金热压缩变形的流变应力行为   总被引:3,自引:1,他引:3  
采用热模拟试验对1种Al-Mg-Sc合金进行等温热压缩实验,研究该合金在变形温度为300~450℃,应变速率0.001~1 s-1条件下的热压缩变形流变应力行为.结果表明:该Al-Mg-Sc合金在变形温度为300℃,应变速率0.01~1 s-1的条件下,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征;而在其他条件下,应力达到峰值后随应变的增加而逐渐下降,表现出动态再结晶特征.应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius关系,通过线性回归分析计算出该材料的应变硬化指数n以及变形激活能Q,获得该铝合金高温条件下的流变应力本构方程.  相似文献   

8.
为了更好地描述35CrMo钢应力-应变关系,建立材料的本构模型,采用Gleeble3800热模拟试验机对热轧后的35CrMo钢进行了热模拟高温压缩实验,研究了35CrMo钢在变形温度为800,900,1 000,1 100,1 200℃,应变速率分别为0.01,0.1,1,10s-1的条件下,变形温度和应变速率对材料流变应力的影响。实验结果表明:35CrMo钢高温变形时存在动态回复型与动态再结晶型两种应力-应变关系,通过求解材料临界应变与峰值应变的关系,间接建立了35CrMo钢峰值应力本构方程,并验证了其准确性。所提出的本构方程可以较好地描述35CrMo钢热变形条件下的应力-应变关系,对于35CrMo钢的热成形工艺设计及数值模拟工作具有基础理论意义。  相似文献   

9.
变形镁合金高温变形流变应力分析   总被引:23,自引:0,他引:23       下载免费PDF全文
AZ31B镁合金是应用最广泛的变形镁合金,研究它在高温下的流变应力对热加工过程有很大的实际意义。采用实验法研究了AZ31B镁合金高温高应变速率压缩时流变应力,结果表明镁合金在573-723K、应变速率为0.01-5s^-1进行高温压缩的情况下,变形温度和应变速率对流变应力有显著的影响,流变应力随应变速率的升高和变形温度的降低而升高,其稳态流变应力同Zener-Hollomon参数的对数之间呈线性关系。引入Zener-Hollomon参数的指数形式正确描述AZ31B镁合金热压缩变形时流变应力同变形温度和应变速率之间的关系。  相似文献   

10.
金属高温塑性本构方程的研究   总被引:8,自引:0,他引:8  
有限元数值模拟技术的重大发展使得其在锻造加工研究领域得到了越来越广泛的应用.本构方程是描述材料变形的基本信息和有限元模拟中不可缺少的数学模型,它反映了流动应力与应变、应变速率以及温度之间的依赖关系.为了建立本构方程,必须测量一定温度、应变速率范围内的流动应力值,这通常是由压缩试验来完成的.有限元模拟结果的有效性首先取决于本构方程的精确程度,所以,如何获取精确的本构方程成为锻造成形过程计算机模拟技术中的首要问题.  相似文献   

11.
ZK60镁合金的室温静液挤压强化   总被引:3,自引:0,他引:3  
对室温静液挤压ZK60变形镁合金的组织、力学性能进行研究。研究结果表明:室温静液挤压后镁合金的表面质量良好:由于加工硬化的作用,镁合金抗拉强度、屈服强度和硬度分别提高20%,60%和54%;变形过程发生了孪生动态再结晶,孪晶和二次孪晶的产生可以阻碍裂纹扩展,镁在基面滑移与孪生的交互作用下形成微晶和孪晶位错;室温静液挤压的镁合金具有良好的金属流动性,应力分布状况亦有利于变形:采用室温静液挤压,可实现镁合金室温下大变形量的形变,是强化镁合金的有效途径之一。  相似文献   

12.
ZK60镁合金铸态显微组织分析   总被引:11,自引:2,他引:11  
作为高强度变形镁合金研究的基础工作,较系统研究了ZK60镁合金的铸态组织.光学显微分析表明,铸态组织中存在很明显的枝晶;有相当数量的共晶组织沿晶界或枝晶边界断续分布.差热分析(DSC)表明,在加热和冷却速度分别为15 K/min和10 K/min时共晶组织的熔化温度为345℃,凝固析出温度为328.7℃.x-衍射分析初步确定,在铸态ZK60镁合金中主要有α-Mg,MgZn,MgZn23种合金相.透射电子显微分析发现,共晶组织类型、组成和分布具有多样性,选区电子衍射花样标定共晶组织主要由α-Mg和MgZn两相构成.  相似文献   

13.
采用CO2激光焊接ZK60高强镁合金薄板,并使用金相显微镜、万能拉伸试验机、扫描电子显微镜等分析测试手段,研究CO2激光焊接接头各区域的显微组织、接头的力学性能、断口形貌特征等,分析主要焊接参数(包括激光功率、焊接速度)对焊接质量的影响,探讨高强镁合金的激光焊接工艺特点.研究结果表明:在本实验条件下,采用CO2激光焊接工艺能够实现镁合金ZK60的连接;通过适当地选择工艺参数可以获得比较理想的焊缝,接头抗拉强度可达母材强度的80.4%.  相似文献   

14.
Sr对ZK60镁合金晶粒细化的影响   总被引:3,自引:0,他引:3  
用金相显微分析、扫描电镜分析及能谱分析等方法研究了Sr对ZK60镁合金晶粒细化的影响. 结果表明:添加少量的Sr对ZK60镁合金有很好的组织细化效果,但其细化效率受Sr加入量和熔体保温时间的影响较大. 在给定熔体保温时间的条件下,随着Sr质量分数从0.01%增加到0.1%,晶粒细化效率逐渐提高. 在给定Sr加入量的条件下,当熔体保温时间为20~80min时,晶粒细化效率随熔体保温时间的延长而提高;当熔体保温时间超过80min后,晶粒细化效率随熔体保温时间的延长而降低.  相似文献   

15.
利用光学显微镜、扫描电子显微镜、X线衍射分析及力学性能测试等手段,研究稀土元素Dy和Y对ZK60镁合金铸态显微组织及力学性能的影响。研究结果表明:在ZK60镁合金中单独添加质量分数为1%Dy和1%Y均能细化晶粒,Y的细化效果优于Dy的细化效果;当同时添加Dy和Y时,细化效果最佳,合金的平均晶粒尺寸由原来的105μm减小至35μm,因此,合金的塑性都有不同程度的提高;单独添加Dy后,合金的抗拉强度下降,而单独添加Y后,合金的抗拉强度略有提高,同时添加Dy和Y后,由于Dy和Y原子之间相互交换作用,合金的抗拉强度、屈服强度和伸长率分别提高至210.2 MPa,115.6 MPa和8.6%,较未加稀土元素的ZK60镁合金分别提高5.3%,17.1%和177.4%;加入稀土Dy和Y后合金力学性能的变化主要与Dy和Y在合金中形成的I相和W相的比例有关。  相似文献   

16.
Hydrostatic cyclic expansion extrusion(HCEE) process at elevated temperatures is proposed as a method for processing less deformable materials such as magnesium and for producing long ultrafine-grained rods. In the HCEE process at elevated temperatures, high-pressure molten linear low-density polyethylene(LLDPE) was used as a fluid to eliminate frictional forces. To study the capability of the process,AM60 magnesium rods were processed and the properties were investigated. The mechanical properties were found to improve significantly after the HCEE process. The yield and ultimate strengths increased from initial values of 138 and 221 MPa to 212 and 317 MPa, respectively.Moreover, the elongation was enhanced due to the refined grains and the existence of high hydrostatic pressure. Furthermore, the microhardness was increased from HV 55.0 to HV 72.5. The microstructural analysis revealed that ultrafine-grained structure could be produced by the HCEE process. Moreover, the size of the particles decreased, and these particles thoroughly scattered between the grains. Finite element analysis showed that the HCEE was independent of the length of the sample, which makes the process suitable for industrial applications.  相似文献   

17.
Hydrostatic cyclic expansion extrusion(HCEE) process at elevated temperatures is proposed as a method for processing less deformable materials such as magnesium and for producing long ultrafine-grained rods. In the HCEE process at elevated temperatures, high-pressure molten linear low-density polyethylene(LLDPE) was used as a fluid to eliminate frictional forces. To study the capability of the process,AM60 magnesium rods were processed and the properties were investigated. The mechanical properties were found to improve significantly after the HCEE process. The yield and ultimate strengths increased from initial values of 138 and 221 MPa to 212 and 317 MPa, respectively.Moreover, the elongation was enhanced due to the refined grains and the existence of high hydrostatic pressure. Furthermore, the microhardness was increased from HV 55.0 to HV 72.5. The microstructural analysis revealed that ultrafine-grained structure could be produced by the HCEE process. Moreover, the size of the particles decreased, and these particles thoroughly scattered between the grains. Finite element analysis showed that the HCEE was independent of the length of the sample, which makes the process suitable for industrial applications.  相似文献   

18.
利用原位拉伸扫描电镜观察,研究ZK60合金及含稀土Y的ZK60(0.9Y)合金热轧板材动态拉伸过程中裂纹萌生和扩展情况,讨论合金的显微组织与断裂行为的相互关系.实验表明:在拉伸过程中,合金轧制态试样裂纹以撕裂的形式进行扩展,断口区域有解理、准解理断裂痕迹,ZK60(0.9Y)合金裂纹萌生所需载荷大于ZK60合金,且在拉伸过程中发生第2相的破碎,主裂纹沿第2相扩展,基体中的二次裂纹多萌生于第2相周围.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号