首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that progesterone inhibits endothelial cell proliferation through a nuclear receptor-mediated mechanism. Here, we further demonstrate that progesterone at physiologic levels (5 – 500 nM) dose- and time-dependently inhibited DNA synthesis of cultured human umbilical vein endothelial cells (HUVEC). The mRNA and protein levels of p21, p27, and p53 in HUVEC were increased by progesterone. The formation of CDK2-p21 and CDK2-p27 were increased and the CDK2 activity was decreased in the progesterone-treated HUVEC. The progesterone-inhibited [3H]thymidine incorporation was completely blocked when the expressions of p21 and p27 were knocked-down together. Transfection of HUVEC with dominant negative p53 cDNA prevented the progesterone-induced increases in p21 and p27 promoter activity and protein level, decreases in thymidine incorporation, and capillary-like tube formation. Matrigel angiogenesis assay in mice demonstrated the antiangiogenic effect of progesterone in vivo. These findings demonstrate for the first time that progesterone inhibited endothelial cell proliferation through a p53-dependent pathway. Received 28 July 2008; received after revision 25 September 2008; accepted 26 September 2008  相似文献   

2.
Despite the common occurrence of forkhead associated (FHA) phosphopeptide-binding domains and really interesting new gene (RING) E3 ubiquitin ligase domains, gene products containing both an N-terminal FHA domain and C-terminal RING domain constitute a highly distinctive intersection. Characterized FHA-RING ligases include the two vertebrate proteins, Checkpoint with FHA and RING (Chfr) and RING finger 8 (Rnf8), as well as three fungal proteins, Defective in mitosis (Dma1), Chf1 and Chf2. These FHA-RING ligases play roles in negative regulation of the cell division cycle, apparently by coupling protein phosphorylation events to specific ubiquitylation of target proteins. Here, the available data on upstream and downstream regulation of and by FHA-RING ligases are reviewed. Received 24 April 2008; received after revision 18 June 2008; accepted 20 June 2008  相似文献   

3.
4.
The semaphorin family is a large group of proteins controlling cell migration and axonal growth cone guidance. These proteins are bi-functional signals capable of growth promotion or growth inhibition. Initially described in the nervous system, the majority of studies related to semaphorins and semaphorin signalling are nowadays performed in model systems outside the nervous system. Here, we provide an exhaustive review of the many faces of semaphorins both during developmental, regulatory and pathological processes. Indeed, because of their crucial fundamental roles, the semaphorins and their receptors represent important targets for the development of drugs directed at a variety of diseases. Received 22 August 2008; received after revision 22 September 2008; accepted 24 September 2008 L. Roth, E. Koncina, S. Satkauskas: These authors contributed equally to this work.  相似文献   

5.
6.
7.
Bile acids and bile alcohols in the form of their conjugates are amphipathic end products of cholesterol metabolism with multiple physiological functions. The great variety of bile acids and bile alcohols that are present in vertebrates are tabulated. Bile salts have an enterohepatic circulation resulting from efficient vectorial transport of bile salts through the hepatocyte and the ileal enterocyte; such transport leads to the accumulation of a pool of bile salts that cycles between the liver and intestine. Bile salt anions promote lipid absorption, enhance tryptic cleavage of dietary proteins, and have antimicrobial effects. Bile salts are signaling molecules, activating nuclear receptors in the hepatocyte and ileal enterocyte, as well as an increasing number of G-protein coupled receptors. Bile acids are used therapeutically to correct deficiency states, to decrease the cholesterol saturation of bile, or to decrease the cytotoxicity of retained bile acids in cholestatic liver disease.  相似文献   

8.
Myosin I is a non-filamentous, single-headed, actin-binding motor protein and is present in a wide range of species from yeast to man. The role of these class I myosins have been studied extensively in simple eukaryotes, showing their role in diverse processes such as actin cytoskeleton organization, cell motility, and endocytosis. Recently, studies in metazoans have begun to reveal more specialized functions of myosin I. It will be a major challenge in the future to examine the physiological functions of each class I myosin in different cell types of metazoans.  相似文献   

9.
10.
11.
The Agouti-Related Protein (AgRP) is a powerful orexigenic peptide that increases food intake when ubiquitously overexpressed or when administered centrally. AgRP-deficiency, on the other hand, leads to increased metabolic rate and a longer lifespan when mice consume a high fat diet. In humans, AgRP polymorphisms have been consistently associated with resistance to fatness in Blacks and Whites and resistance to the development of type-2 diabetes in African Blacks. Systemically administered AgRP accumulates in the liver, the adrenal gland and fat tissue while recent findings suggest that AgRP may also have inverse agonist effects, both centrally and peripherally. AgRP could thus modulate energy balance via different actions. Its absence or reduced functionality may offer a benefit both in terms of bringing about negative energy balance in obesigenic environments, as well as leading to an increased lifespan.  相似文献   

12.
Cell-cell adhesion is a critical property of all multi-cellular organisms and its correct regulation is critical during development, differentiation, tissue building and maintenance, and many immune responses. The multi-talin-like FERM domain containing protein, FrmA, is required during starvation-induced multi-cellular development of Dictyostelium cells. Loss of FrmA leads to increased cell-cell adhesion and results in impaired multi-cellular development, slug migration and fruiting bodies. Further, mixing experiments show that FrmA null cells are excluded from the apex of wild-type mounds, to which cells that normally form the organising centre known as the tip sort. These data suggest a critical role for FrmA in regulating cell-cell adhesion, multi-cellular development and, in particular, the formation of the organising centre known as the tip. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 28 August 2008; received after revision 10 October 2008; accepted 21 October 2008  相似文献   

13.
Selenocystine (SeC), a naturally occurring selenoamino acid, has been shown to be a novel compound with broad-spectrum anticancer activity. In this study, we showed that SeC triggered time- and dose-dependent apoptosis in A375 human melanoma cells by activating the mitochondria-mediated and death receptor-mediated apoptosis pathways. Pretreatment of cells with a general caspase inhibitor z-VAD-fmk significantly prevented SeC-induced apoptosis. A375 cells exposed to SeC showed an increase in levels of total p53 and phosphorylated p53 (serine-15). Silencing of p53 expression with RNA interference significantly suppressed SeC-induced p53 phosphorylation, caspase activation and apoptotic cell death. Moreover, generation of reactive oxygen species and subsequent induction of DNA strand breaks were found to be upstream mediators of p53 activation induced by SeC. In a nude mice xenograft experiment, SeC significantly inhibited the tumor growth of A375 cells via induction of apoptosis. Taken together, these results suggest the potential applications of SeC in cancer chemoprevention.  相似文献   

14.
Cutaneous wound healing is a complex and highly coordinated process where a number of different cell types participate to renew the damaged tissue under the strict regulation of soluble and insoluble factors. One of the most versatile processes involved in wound repair is proteolysis. During cell migration, proteins of extracellular matrix are cleaved, often creating biologically active cleavage products, and proteolysis of cellular contacts leads to increased cell motility and division. Moreover, proteases activate various growth factors and other proteases in wound and regulate growth factor signaling by shedding growth factor receptors on cell surface. Normally, proteolysis is strictly controlled, and changes in protease activity are associated with alterations in wound closure and scar formation. Here, we present the current view on the role of metalloproteinases and the plasmin-plasminogen system in normal and aberrant cutaneous wound repair and discuss their role as potential therapeutic targets for chronic ulcers or fibrotic scars. Received 07 July 2008; received after revision 11 August 2008; accepted 13 August 2008  相似文献   

15.
Small HERC proteins are defined by the presence of one RCC1-like domain and a HECT domain. Having evolved out of one common ancestor, the four members of the family exhibit a high degree of homology in genomic organization and amino acid sequence, thus it seems possible that they might accomplish similar functions. Here we show that small HERC proteins interact with each other and localize to the same cellular structures, which we identify as late endosomes and lysosomes. We demonstrate interaction of HERC3 with the ubiquitin-like proteins hPLIC-1 and hPLIC-2 and we establish interaction of HERC5 with the metastasis suppressor Nm23B. While hPLIC proteins are not ubiquitinated by HERC3, HERC5 plays an important role in ubiquitination of Nm23B. In summary, although small HERC proteins are highly homologous showing the same subcellular distribution, they undergo different molecular interactions.  相似文献   

16.
Role of full-length osteoprotegerin in tumor cell biology   总被引:1,自引:1,他引:0  
Osteoprotegerin (OPG) is a soluble tumor necrosis factor receptor family member, which potently inhibits RANKL-mediated osteoclastogenesis. Numerous constructs have been created for therapeutic purposes in which the heparin-binding and death homology domains of OPG were removed and the remaining peptide (amino acids 22–194) was fused to the Fc domain of human IgG1 (OPG-Fc). The administration of OPG-Fc efficiently counteracted bone loss in a variety of preclinical models of cancers. However, several in vitro studies have shown that native or recombinant full-length OPG not only neuralizes RANKL, but also the death-inducing ligand TRAIL, suggesting that OPG might potentially counteract the anti-tumor activity of TRAIL. Additional evidence suggests that full-length OPG possesses RANKL- and TRAIL-independent biological properties, mainly related to the promotion of endothelial cell survival and angiogenesis. Finally, breast tumor cells overexpressing OPG have shown increased bone metastatic potential in vivo. The relevance of these apparently conflicting findings in tumor cell biology is highlighted. Received 2 September 2008; received after revision 29 September 2008; accepted 13 October 2008  相似文献   

17.
18.
The physiological state of eukaryotic cells controls nuclear trafficking of numerous cargos. For example, stress results in the inhibition of classical protein import, which is characterized by the redistribution of several transport factors. As such, importin-alpha and cellular apoptosis susceptibility protein (CAS) accumulate in nuclei of heat-shocked cells; however, the mechanisms underlying this relocation are not fully understood. We now show that heat upregulates the initial docking of importin-alpha at the nuclear envelope and stimulates the translocation of CAS into the nuclear interior. Moreover, heat exposure compromises the exit of importin-alpha from nuclei and drastically increases its retention in the nucleoplasm, whereas CAS nuclear exit and retention are less affected. Taken together, our results support the idea that heat shock regulates importin-alpha and CAS nuclear accumulation at several levels. The combination of different stress-induced changes leads to the nuclear concentration of both transport factors in heat-stressed cells.  相似文献   

19.
Tautomerase superfamily members have an amino-terminal proline and a β–α–β fold, and include 4-oxalocrotonate tautomerase (4-OT), 5-(carboxymethyl)-2-hydroxymuconate isomerase (CHMI), trans- and cis-3-chloroacrylic acid dehalogenase (CaaD and cis-CaaD, respectively), malonate semialdehyde decarboxylase (MSAD), and macrophage migration inhibitory factor (MIF), which exhibits a phenylpyruvate tautomerase (PPT) activity. Pro-1 is a base (4-OT, CHMI, the PPT activity of MIF) or an acid (CaaD, cis-CaaD, MSAD). Components of the catalytic machinery have been identified and mechanistic hypotheses formulated. Characterization of new homologues shows that these mechanisms are incomplete. 4-OT, CaaD, cis-CaaD, and MSAD also have promiscuous activities with a hydratase activity in CaaD, cis-CaaD, and MSAD, PPT activity in CaaD and cis-CaaD, and CaaD and cis-CaaD activities in 4-OT. The shared promiscuous activities provide evidence for divergent evolution from a common ancestor, give hints about mechanistic relationships, and implicate catalytic promiscuity in the emergence of new enzymes. Received 22 May 2008; received after revision 20 June 2008; accepted 02 July 2008  相似文献   

20.
From endoderm to pancreas: a multistep journey   总被引:2,自引:0,他引:2  
The formation of the vertebrate pancreas is a complex process that typifies the basic steps of embryonic development. It involves the establishment of competence, specification, signaling from neighboring tissues, morphogenesis, and the elaboration of tissue-specific genetic networks. A full analysis of this multistep process will help us to understand classic principles of embryonic development. Furthermore, this will provide the blueprint for experimental programming of pancreas formation from embryonic stem cells in the context of diabetes cell-therapy. Although in the past decade many studies have contributed to a solid foundation for understanding pancreatogenesis, important gaps persist in our knowledge of early pancreas formation. This review will summarize the current understanding of the early mechanisms coming into play to pattern the "pre-pancreatic" region within the endoderm and, gradually, specify the pancreatic tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号