首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
汽车再生制动系统机电制动力分配   总被引:5,自引:0,他引:5  
对汽车制动能量再生系统的机电制动力分配控制方法进行了研究,以电机制动效能为依据划分制动模式,提出了常规液压制动与再生制动力(电机制动)协调控制方法,建立了相应的再生制动系统机电制动力分配控制策略模型,并且对控制模型进行了仿真分析.结果表明,该再生制动系统机电制动力分配控制策略能够保证汽车前后轴制动力分配随理想制动力分配I曲线变化,实现良好制动性能,制动过程中增加了电机制动率,从而提高了汽车制动能量的回收率.  相似文献   

2.
全轮驱动混合动力汽车再生制动系统控制策略   总被引:1,自引:0,他引:1  
在传统汽车制动理论的基础上,基于最大回收制动能量和制动的安全性,提出了一种全轮驱动混合动力汽车制动能量分配与再生制动控制策略.综合考虑电机电池效率等限制因素后,进行整车再生制动系统建模和典型制动工况下的仿真.结果表明,在制动车速为30 km/h,制动强度Z分别为0.1、0.3、0.5下最大能量回收率分别可达87.5%、47.8%、28.6%,采用提出的制动能量分配与再生制动控制策略能满足整车制动力分配的要求,并实现高效的制动能量回收.  相似文献   

3.
基于发动机制动的HEV再生制动控制策略   总被引:1,自引:1,他引:0  
以ISG(integrate starter generator)型混合动力CVT(continuously variable transmission)轿车为研究对象,进行发动机制动性能建模与仿真计算,提出基于前轮最大可承受减速度的制动力最优分配策略.无再生制动时,根据发动机制动特性计算,通过调整CVT速比来以充分利用发动机制动;有再生制动时,优先采用电机制动,其次为发动机机制动,最后为摩擦制动.进行基于控制策略的混合动力汽车再生制动建模和典型工况下的仿真分析,仿真结果验证所提出的再生制动控制策略的正确性和可行性.  相似文献   

4.
考虑混合动力汽车制动安全性和燃油经济性,提出了一种基于电池SOC值和制动强度的再生制动力控制策略.提出了通过调节CVT的速比及控制电机工作在高效区来提高电机发电效率的再生制动控制方法.进行了整车再生制动系统建模和典型城市驱动循环工况下的仿真,结果表明,提出的CVT速比控制策略能使以CVT为变速器的混合动力汽车比以MT为变速器的混合动力汽车在ECE EUDC驱动循环工况下的再生制动能量回收率提高2.86%.  相似文献   

5.
针对现行电动汽车再生制动的不足,提出一种新型电磁机械耦合再生制动系统(electromagnetic-mechanical coupled regenerative braking system,EMCB),并对其进行动力学分析和耦合机理研究;基于EMCB系统和理想制动力分配曲线提出一种制动力分配策略,构建EMCB系统模型和控制策略仿真系统,应用Car SimSimulink联合仿真平台,以有、无滑移率控制的紧急制动工况为例,对制动能回收、制动稳定性和制动舒适性等进行对比研究和验证分析。研究结果表明,所提出的制动力分配策略不仅实现中低制动强度下实际制动力分配曲线与理想I曲线高度吻合,还满足高制动强度下制动效能的需求,即保证了制动稳定性和制动舒适性,又提高了能量回收效率,有效增加了电动汽车的续驶里程,为进一步获得良好的防抱死制动系统(ABS)、电子制动力分配系统(EBD)、电子稳定系统(ESP)等控制性能奠定了基础。  相似文献   

6.
再生制动是混合动力汽车区别于传统汽车的技术特点,是提高车辆燃油经济性的重要措施之一.以一种轴间力矩耦合的插电式并联混合动力汽车为研究对象,从再生制动分配算法的影响因素入手,提出了一种带有模糊控制的混合动力汽车再生制动能量管理策略.所设计的控制策略主要针对两个层面的控制决策,顶层是轴间制动力矩的分配决策,底层是再生制动电机所在的后轴力矩在摩擦制动与再生制动之间的分配决策.采用多种典型车辆行驶工况对所提出的模糊控制策略进行仿真研究.结果表明,所提出的模糊控制策略能够明显改善车辆的能量回收效果,与传统理想制动力分配曲线控制策略相比,能量回收最多可提高23.44%.  相似文献   

7.
ISG混合动力再生制动系统压力协调控制策略   总被引:2,自引:0,他引:2  
以ISG(integrated startor and generator)型混合动力长安轿车为原型,提出了基于HEV(hybrid electric vehicle)制动力分配的制动系统压力协调控制策略,建立了HEV再生制动离线仿真模型.研制了HEV摩擦制动液压实验系统,构建了dSPACE环境下的混合动力再生制动硬件在环仿真试验平台,进行了不同制动强度下的再生制动系统性能实验,验证了制动力分配和制动压力协调控制的正确有效性.  相似文献   

8.
在传统汽车制动理论的基础上,基于最大回收制动能量和制动的安全性,提出了一种全轮驱动混合动力汽车制动能量分配与再生制动控制策略。综合考虑电机电池效率等限制因素后,进行整车再生制动系统建模和典型制动工况下的仿真。结果表明,在制动车速为30 km/h,制动强度Z分别为0.1、0.3、0.5下最大能量回收率分别可达87.5%、47.8%、28.6%,采用提出的制动能量分配与再生制动控制策略能满足整车制动力分配的要求,并实现高效的制动能量回收。  相似文献   

9.
利用惯性比例阀增强电动公交车制动能回收力   总被引:1,自引:1,他引:0  
为提高城市电动客车并联再生制动策略的制动稳定性与制动能回收量,分析了电动客车制动稳定性要求对机电并行再生制动时制动能回收率的影响。根据欧洲经济委员会第13号制动法规(regulation No.13 of the Economic Commission for Europe,简称ECE R13)要求,利用广义制动力分配线与广义理想制动力分配曲线的位置关系,结合电动客车在典型城市工况下的运行特征,将机电并行制动的制动强度确定在0.1与0.3之间;在机电并行制动时,利用惯性比例阀将机械制动系制动力分配比调整为ECE R13法规许可的最大值。对advisor2002电动汽车仿真软件进行了二次开发,建立了后驱型电动汽车仿真模型。仿真表明新策略使城市电动客车在典型城市工况下的制动能回收量得到了明显提高。  相似文献   

10.
一种改进的再生制动控制策略优化   总被引:1,自引:0,他引:1  
为了充分利用混合动力汽车的再生制动能量,提高整车燃油经济性,通过分析混合动力汽车再生制动系统的工作原理,依据理想的前后轮制动力分配曲线,基于比例控制策略,提出了一种并行制动力的分配策略,以对摩擦制动力和再生制动力进行合理分配.进而以平均再生制动力为目标,选取制动控制策略控制曲线上的关键点坐标为控制变量,对并行再生制动控制策略进行了优化设计.选取Saturn SL1为研究车型,在市区15工况下进行了仿真研究.结果表明,优化后的并行控制策略既可以满足制动安全性的要求又可以回收更多的制动能量.  相似文献   

11.
电动汽车再生制动控制策略研究   总被引:4,自引:0,他引:4  
制定合理的再生制动控制策略,使其在保证制动稳定性的基础上,最大限度回收制动能量. 通过对汽车制动动力学和相关法规的分析,结合电机的输出特性,建立了电机模型,提出了一种前后轮制动力分配的控制策略,并在Advisor软件上进行了仿真分析. 与常用的比例制动控制策略相比,该控制策略能充分利用电机的制动转矩,大幅提高制动能量的回收;同时也很好地满足了制动稳定性要求.  相似文献   

12.
为了提高混合动力汽车(HEV)再生制动时蓄电池的充电效率,保证蓄电池的使用安全,在分析蓄电池充电过程热交换模型的基础上,建立了电池开路电压-内阻模型与充电效率间的数学关系.然后,基于马斯定律,设计了适用于HEV再生制动时电池快速充电模糊控制算法.在Mat1ab环境下搭建了闭环控制系统仿真模型,通过建模与仿真计算出HEV在不同控制策略下的电能回收率.结果表明在相同制动情况下,设计的快速充电模糊控制策略与限流充电控制策略相比,电能回收率增加了8.41%.  相似文献   

13.
为改善电动汽车的再生制动能量回收率,设计了一种以驾驶员制动、车速、电池荷电状态(SOC)和电池组温度为输入参数,以再生制动力为输出的Sugeno型模糊算法控制器。通过改进ADVISOR中VEH_SMCAR车模型的原有制动力分配规则,电池SOC、电池电流和电机转矩得到提高。仿真结果表明:改进的模糊控制算法和制动力分配规则合理可行,在保证车辆良好制动性能的前提下,可以降低电池在一个CYC_UDDS循环工况下的耗电量,提高能量利用率,有效延长电动汽车一次充电续驶里程。该研究为纯电动汽车再生制动控制策略的制定提供了参考。  相似文献   

14.
为准确获取液力变矩-减速装置的制动特性,建立了某型液力变矩-减速装置制动工况下各叶轮及辅助液力减速器流道模型。运用CFD技术分析了液力变矩-减速装置泵轮、涡轮闭锁状态下在1000~2000 r/min转速时的各叶轮及辅助液力减速器流道内部速度流线、压力场分布特点,并进行了制动特性仿真计算。仿真结果与实验结果对比计算误差在10%以内,表明仿真方法和仿真模型准确、可靠。  相似文献   

15.
A series-parallel hydraulic hybrid system applied to public buses is put torwaro, ano parameters of key components are analyzed and determined. Energy management strategy based on logic thresh- old is designed which is aimed at efficient operation of the overall system considering the operational characteristic of the components and taking the curves of engine, hydraulic pump/motor and hydrau- lic pump as the main design basis; regenerative control strategy which makes regenerative brake sys- tem and frictional brake system work harmoniously is designed to raise recovery rate of regenerative brake energy. System dynamic modeling and simulation results show that the energy control strategy designed here is able to adapt system to changes of working condition and switch the operating mode reasonably. The regenerative braking control strategy is effective in raising the utilization of energy and improving fuel economy.  相似文献   

16.
电动汽车可以通过再生制动提高动力电池的能量利用效率并延长续航里程;而电动汽车的再生制动效率依赖于其制动力的分配策略。在不同制动强度下,电动汽车再生制动过程制动力的分配比例应该不同,需要根据驾驶员踩踏制动踏板的位移进行制动意图和制动强度的识别。基于制动踏板位移对应的电压和电压变化率,设计了个模糊逻辑控制器,分别进行驾驶员制动意图和制动强度的识别。将驾驶员的制动意图分为缓慢制动、中等制动和紧急制动三种状态;并对三种状态下的制动强度变化进行准确的识别。搭建了由制动踏板、dSPACE半实物仿真平台和Control Desk调试界面组成的测试系统。对设计的模糊逻辑控制器进行了实验测试。测试结果显示,制动踏板位移对应的电压和电压变化率可以反映驾驶员的制动意图和制动强度,通过设计的模糊逻辑控制器可以识别出驾驶员的制动意图和对应的制动强度变化。因此,本系统可以用于电动汽车再生制动过程中进行制动强度的识别和基于制动强度的制动力分配,提高电动汽车的能量利用效率。  相似文献   

17.
针对搭载CVT的插电式混合动力轿车,设计了一种基于动力源外特性曲线和驾驶员踏板操作信号的需求转矩解析方法,在此基础上提出驱动和制动工况下基于瞬时经济性成本最低的能量管理策略,该策略以需求转矩、车速和电池SOC为状态变量,以发动机节气门开度、电机转矩、CVT速比为控制变量.进一步研究了电量消耗阶段有无发动机单独驱动模式对整车能耗经济性的影响.通过自行搭建的前向模型进行仿真,结果表明,电量消耗阶段无发动机单独驱动模式的控制策略具有更强的综合性经济优势.  相似文献   

18.
李刚  杨志 《科学技术与工程》2020,20(4):1663-1668
伴随汽车的电子化与智能化发展,针对四轮独驱电动汽车驱/制动力独立可控的优势,提出了一种考虑驾驶员制动特性的四轮独驱电动汽车复合制动控制策略。通过应用车辆动力学仿真软件CarSim与MATLAB/Simulink软件建立车体模型、电机模型、电池模型和能量回收控制模型,并合理分配前后轴制动力矩和液压制动与电机制动的比例,通过两种不同循环实验工况对能量回收控制方法进行仿真实验验证。实验结果表明:所提出的复合制动控制策略可以有效分配汽车前后轴制动力矩,保证汽车制动稳定性,并获得较高的能量回收率,提高汽车行驶里程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号