首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I Sabry  R J Reiter 《Experientia》1988,44(6):509-511
Hypophysectomy in adult male rats greatly attenuated the nocturnal rise in both pineal N-acetyltransferase (NAT) activity and melatonin content. High nighttime levels of NAT and melatonin were not restored by treating the animals with either prolactin or growth hormone, alone or in combination. Treating intact rats with bromocriptine, which depresses circulating prolactin levels, also was without effect on pineal melatonin synthesis. It appears that neither prolactin nor growth hormone are of major importance in determining pineal melatonin production.  相似文献   

2.
Previous studies indicate that the pineal gland alters prolactin secretion, and it was suggested that at least part of the effect of the pineal hormone melatonin on prolactin release may be mediated by the hypothalamic structures. In this study, pinealectomy and lesions of the suprachiasmatic nuclei were found to alter serum levels of prolactin in the same direction, an effect that was counteracted by daily afternoon melatonin administration. Melatonin, but not other pineal indoles, also prevented sulpiride-induced prolactin secretion in pinealectomized or suprachiasmatic nuclei-lesioned and ovariectomized rats, which suggested that the pineal gland can modulate prolactin secretion by acting through a dopamine mechanism independent of hypothalamic suprachiasmatic structures.  相似文献   

3.
Acute bilateral superior cervical ganglionectomy (SCGX) completely prevents the nocturnal rises in pineal N-acetyltransferase (NAT) activity and melatonin content in male rats kept in light-dark cycles of 14:10. Unilateral SCGX causes the NAT and melatonin levels to be intermediate between those in sham-operated control rats and those in rats from which both ganglia had been removed.  相似文献   

4.
Summary Previous studies indicate that the pineal gland alters prolactin secretion, and it was suggested that at least part of the effect of the pineal hormone melatonin on prolactin release may be mediated by the hypothalamic structures. In this study, pinealectomy and lesions of the suprachiasmatic nuclei were found to alter serum levels of prolactin in the same direction, an effect that was counteracted by daily afternoon melatonin administration. Melatonin, but not other pineal indoles, also prevented sulpiride-induced prolactin secretion in pinealectomized or suprachiasmatic nuclei-lesioned and ovariectomized rats, which suggested that the pineal gland can modulate prolactin secretion by acting through a dopamine mechanism independent of hypothalamic suprachiasmatic structures.The authors thank Ms Karen Shashok for revising the English style. This work was supported in part by a grant GG85-0168 from the Comisión Asesora de Investigación Cientifica y Ténica. The NIAMDD, through the National Pituitary Agency, supplied the radioimmunoassay materials for prolactin determinations.  相似文献   

5.
Summary Acute bilateral superior cervical ganglionectomy (SCGX) completely prevents the nocturnal rises in pineal N-acetyltransferase (NAT) activity and melatonin content in male rats kept in light-dark cycles of 1410. Unilateral SCGX causes the NAT and melatonin levels to be intermediate between those in sham-operated control rats and those in rats from which both ganglia had been removed.Supported by NSF, grant No. PCM 77-05734.  相似文献   

6.
The aim of this study was to compare the effects of pineal indole treatments on LH and FSH release in pinealectomized and suprachiasmatic lesioned and ovariectomized rats rendered hyperprolactinemic by acute sulpiride treatment. pinealectomy or suprachiasmatic nuclei lesions in female rats both decreased plasma LH and FHS at 10, but not at 20 d after surgery, whereas the daily afternoon administration of melatonin effectively restored levels of both gonadotropins to control values. In ovariectomized rats, pinealectomy or suprachiasmatic nuclei lesions were ineffective in counteracting the high plasma levels of LH and FSH. However, sulpiride treatment in both pinealectomized and suprachiasmatic nuclei lesioned and castrated female rats significantly decreased the levels of LH and FSH, an effect which was counteracted by daily afternoon melatonin administration. Other pineal indoles tested, i.e., 5-hydroxy- and 5-methoxytryptophol, were ineffective in regulating gonadotropin levels. The results suggest that the pineal gland, through its hormone melatonin, can modulate gonadotropin secretion by acting on a dopamine mechanism independent of hypothalamic suprachiasmatic areas.  相似文献   

7.
M Wilkinson  J Arendt 《Experientia》1978,34(5):667-669
We have extended previous studies on pineal beta-receptors to include effects of oestradiol or PMSG treatment in the immature female rat. Neither manipulation has any effect on norepinephrine-induced N-acetyl transferase (NAT) activity in vitro. In the adult ovariectomised rat oestrogen/progesterone priming exerts a small sensitising effect to beta-stimulation with isoproterenol. Progesterone alone, in vitro, inhibits the release of melatonin from pineals of adult ovariectomised rats.  相似文献   

8.
Melatonin biosynthesis in the mammalian pineal gland   总被引:4,自引:0,他引:4  
D Sugden 《Experientia》1989,45(10):922-932
Rhythmic production of melatonin by the mammalian pineal occurs in response to noradrenergic stimulation which produces a cascade of biochemical events within the pinealocyte. In the rat, massive changes in NAT activity result from an increase in intracellular c-AMP levels produced by a synergistic interaction whereby an alpha 1 activation amplifies beta-adrenergic stimulation. The intracellular events mediating this effect are described. A major aspect of the temporal control of melatonin production is the programmed down-regulation of responses to noradrenergic stimulation once the initial surge of c-AMP is produced. Noradrenergic activation of the gland also influences other enzymic functions, including tryptophan hydroxylase and HIOMT activities, and produces a dramatic increase in intracellular c-GMP levels. Other neurotransmitters and neuropeptides, e.g. VIP, may also influence pineal function and comparisons are made between the rat, the subject of the bulk of experimental studies, and other species.  相似文献   

9.
The protective function of the pineal hormone melatonin in the etiology of cancer and carcinogenic activation is increasingly well-established. Low melatonin levels seem to parallel cancer growth. The question arises as to which factors cause the depression of melatonin levels and what the direct effects are. Melatonin is known to be metabolized in the liver by hydroxylation and subsequent conjugation yielding 6-sulfatoxymelatonin as a main product. Nevertheless, the microsomal monoxygenases catalyzing the first step have been poorly investigated. To further characterize these enzymes, typical inducers of three different sub-classes, namely phenobarbital, 7,12-dimethylbenz[a]anthracene, and 17-estradiol, were administered to female Fischer rats. Circadian urinary excretion patterns of melatonin and 6-sulfatoxymelatonin were determined over a 24-hour period on the third (second) day of induction. Liver homogenates were used to monitor the in vitro conversion of melatonin or 6-hydroxymelatonin to 6-sulfatoxymelatonin. Results of both approaches showed the microsomal monoxygenases catalyzing the 6-hydroxylation of melatonin to be strongly inducible by phenobarbital and to a lesser degree by the polyaromatic hydrocarbon 7,12-dimethylbenz[a]anthracene. The dramatic depletion of circulating melatonin as a result of these induction patterns and its possible implications for oncogenesis are discussed.  相似文献   

10.
In its role as a pineal hormone, melatonin is a pleiotropic, nocturnally peaking and systemically acting chronobiotic. These effects are largely explained by actions via G protein-coupled membrane receptors found in the suprachiasmatic nucleus, but also in numerous other sites. Nuclear (ROR/RZR), cytoplasmic (quinone reductase-2, calmodulin, calreticulin) and mitochondrial binding sites and radical-scavenging properties contribute to the actions of melatonin. Regulation of pineal melatonin biosynthesis is largely explained by control mechanisms acting on arylalkylamine N-acetyltransferase, at the levels of gene expression and/or enzyme stability influenced by phosphorylation and interaction with 14-3-3 proteins. Melatonin is not only a hormone but is also synthesized in numerous extrapineal sites, in which it sometimes attains much higher quantities than in the pineal and the circulation. It is also present in many taxonomically distant groups of organisms, including bacteria, fungi, and plants. Moreover, melatonin is a source of bioactive metabolites, such as 5-methoxytryptamine, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine and N(1)-acetyl-5-methoxykynuramine.  相似文献   

11.
Summary Sham-pinealectomy, performed under different light conditions in newborn and adult rats, is followed by changes of pineal activity resulting in variations of melatonin content. The pineal glands of rats sham-operated under white light produce significantly less melatonin. In contrast, glands of rats operated on under red light show a melatonin content corresponding to that of intact rats. This result implies that normal white light causes a disturbance in melatonin production by a non-retinal pathway.  相似文献   

12.
Exposure of adult male rats to continuously elevated temperature of 32-34 degrees C caused a significant decrease of HIOMT activity involved in the specific metabolic process of production of melatonin, considered an active pineal hormone. The effect was already evident after 24 h exposure and increased further during the next 48 h. The results obtained substantiate previous data that the pineal gland may be involved in the system regulating adaptation to extreme temperature changes.  相似文献   

13.
Summary Although pinealectomy has little influence on the circadian locomotor rhythms of laboratory rats, administration of the pineal hormone melatonin has profound effects. Evidence for this comes from studies in which pharmacological doses of melatonin are administered under conditions of external desynchronization, internal desynchronization, steady state light-dark conditions, and phase shifts of the zeitgeber. Taken together with recent findings on melatonin receptor concentration in the rat hypothalamus, particularly at the level of the suprachiasmatic nuclei, these results suggest that melatonin is a potent synchronizer of rat circadian rhythms and has a direct action on the circadian pacemaker. It is possible, therefore, that the natural role of endogenous melatonin is to act as an internal zeitgeber for the total circadian structure of mammals at the level of cell, tissue, organ, whole organism and interaction of that organism with environmental photoperiod changes.  相似文献   

14.
Melatonin and circadian control in mammals   总被引:5,自引:0,他引:5  
S M Armstrong 《Experientia》1989,45(10):932-938
Although pinealectomy has little influence on the circadian locomotor rhythms of laboratory rats, administration of the pineal hormone melatonin has profound effects. Evidence for this comes from studies in which pharmacological doses of melatonin are administered under conditions of external desynchronization, internal desynchronization, steady state light-dark conditions, and phase shifts of the zeitgeber. Taken together with recent findings on melatonin receptor concentration in the rat hypothalamus, particularly at the level of the suprachiasmatic nuclei, these results suggest that melatonin is a potent synchronizer of rat circadian rhythms and has a direct action on the circadian pacemaker. It is possible, therefore, that the natural role of endogenous melatonin is to act as an internal zeitgeber for the total circadian structure of mammals at the level of cell, tissue, organ, whole organism and interaction of that organism with environmental photoperiod changes.  相似文献   

15.
Melatonin biosynthesis in the mammalian pineal gland   总被引:8,自引:0,他引:8  
Summary Rhythmic production of melatonin by the mammalian pineal occurs in response to noradrenergic stimulation which produces a cascade of biochemical events within the pinealocyte. In the rat, massive changes in NAT activity result from an increase in intracellular c-AMP levels produced by a synergistic interaction whereby an 1 activation amplifies -adrenergic stimulation. The intracellular events mediating this effect are described. A major aspect of the temporal control of melatonin production is the programmed down-regulation of responses to noradrenergic stimulation once the initial surge of c-AMP is produced. Noradrenergic activation of the gland also influences other enzymic functions, including tryptophan hydroxylase and HIOMT activities, and produces a dramatic increase in intracellular c-GMP levels. Other neurotransmitters and neuropeptides, e.g. VIP, may also influence pineal function and comparisons are, made between the rat, the subject of the bulk of experimental studies, and other species.  相似文献   

16.
H Underwood 《Experientia》1990,46(1):120-128
The pineal has been identified as a major circadian pacemaker within the circadian system of a number of lower vertebrates although other pacemaking sites have been implicated as well. The rhythmic synthesis and secretion of the pineal hormone, melatonin, is suggested as the mechanism by which the pineal controls circadian oscillators located elsewhere. Both light and temperature cycles can entrain the pineal melatonin rhythm. The pineal, therefore, acts as a photo and thermoendocrine transducer which functions to synchronize internal cycle with cycles in the environment. A model is presented which portrays the pineal as a major component of a 'multioscillator' circadian system and which suggests how these multiple circadian clocks are coupled to each other and to cycles of light and temperature in the external world.  相似文献   

17.
Summary Exposure of adult male rats to continuously elevated temperature of 32–34°C caused a significant decrease of HIOMT activity involved in the specific metabolic process of production of melatonin, considered an active pineal hormone. The effect was already evident after 24 h exposure and increased further during the next 48 h. The results obtained substantiate previous data that the pineal gland may be involved in the system regulating adaptation to extreme temperature changes.Acknowledgment. The authors are indebted to MissUte Schmidt for her excellent technical assistance.  相似文献   

18.
Melatonin from the retina and the pineal gland functions in neuroendocrine hierarchies. Photoreceptors — eyes and extraretinal — detect light. Oscillators — pineal and suprachiasmatic nuclei — act as pacemakers. Driven neuroendocrine rhythms carry temporal hormone signals throughout the body. Light controls melatonin: light sets the phase of the melatonin rhythm and determines the duration of melatonin synthesis. By these means, circadian rhythms (e.g. in locomotor activity and body temperature) and seasonal rhythms (e.g. in reproduction) are controlled.  相似文献   

19.
Melatonin: presence and formation in invertebrates   总被引:6,自引:0,他引:6  
In vertebrates, it is now clearly demonstrated that the pineal gland is implicated in conveying photoperiodic information via the daily pattern of melatonin secretion. Invertebrates, like vertebrates, use photoperiodic changes as a temporal cue to initiate physiological processes such as reproduction or diapause. How this information is integrated in invertebrates remains an unsolved question. Our review will be an attempt to evaluate the possible role of melatonin in conveying photoperiodic information in invertebrates. It is now well demonstrated in both vertebrates and invertebrates that melatonin as well as its precursors or synthesizing enzymes are present in various organs implicated in photoreceptive processes or in circadian pacemaking. Melatonin, serotonin or N-acetyltransferase have been found in the head, the eyes, the optic lobe and the brain of various invertebrate species. In some species it has also been shown that melatonin is produced rhythmically with high concentrations reached during the dark period. Moreover, the physiological effects of melatonin on various periodic processes such as rhythmic contractions in coelenterates, fissioning of asexual planarians or reproductive events in flies have been reported in the literature. All these results support the hypothesis (refs 36, 37) that melatonin is not solely a pineal hormone but that it may be an evolutionary conservative molecule principally involved in the transduction of photoperiodic information in all living organisms.  相似文献   

20.
Summary Previous studies have shown that daily afternoon injections of melatonin in anosmic male rats result in depressed accessory sex organ weights and serum prolactin levels. The present data indicate that the prolactin-inhibitory effect of melatonin may be mediated via the dopaminergic system.This work was supported by NIH Biomedical Research Support Grant No. 3150-80.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号