首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
植物激素定量分析方法研究进展   总被引:5,自引:0,他引:5  
植物激素是对植物生长发育具有重要调控作用的小分子化合物, 在低浓度下就能发挥生理作用, 参与调控植物生长发育的每一过程. 植物激素的合成、运输、代谢和分子作用机理的深入研究都需要对植物激素进行定量分析. 但是, 植物激素定量分析受到低含量、次生代谢产物背景干扰严重等因素的影响, 一直是植物激素研究领域的瓶颈. 近年来, 随着植物激素在提取、纯化和检测方法等方面的发展, 植物激素定量分析取得一定进展. 固相萃取技术和色谱/质谱联用技术的发展为植物激素的高效提取纯化和准确定量分析提供了可能, 成为植物激素定量分析领域广泛被接受的技术手段. 此外, 液相萃取、免疫纯化、免疫分析和电化学分析等纯化检测方法在植物激素分析中也有应用, 本文对各种纯化检测方法进行了比较和讨论. 随着植物激素调控机理和植物激素互作研究的深入, 需要对原位、动态和多种植物激素同时检测, 这将是植物激素分析领域的未来研究方向.  相似文献   

2.
<正>最近十几年的研究表明,植物肽类激素,同植物经典激素一样,对植物体的生长发育等生理活动具有重要的调控作用.1991年,番茄系统素作为第一个植物肽类激素被发现,之后很多植物肽类激素及其受体又被陆续鉴定出来.植物磺化肽激素(phytosulfokine,PSK)是1996年被发现和研究的一种含两个酪氨酸磺化修饰的五肽激素如图1(a),后续的研究表明它在植物的生长发育、抗逆和先天免疫等  相似文献   

3.
油菜素甾醇类信号转导研究进展   总被引:1,自引:0,他引:1  
汪俏梅  马力耕 《科学通报》2003,48(14):1499-1505
动物体系中的甾醇类激素在动物细胞的生长发育中发挥重要调控作用, 其信号转导途径主要是通过核受体直接调控基因表达. 近年来, 人们研究发现植物细胞中也存在甾醇类激素, 并发现了膜受体复合物的重要组成部分BRI1和通过膜受体介导的信号转导途径, 使得油菜素甾醇类信号从膜上被感知一直到在核内诱导特异基因表达的信号转导途径有了一个基本的轮廓. 本文简要介绍了该领域的最新进展并进行了讨论.  相似文献   

4.
植物激素诱导初期是体细胞胚胎发生的关键时期, 它包含了一个通过细胞脱分化获得细胞全能性的过程. 为了揭示棉花细胞脱分化的分子机制, 利用抑制差减杂交方法建立了一个cDNA文库. 共有286个差异表达的cDNA克隆测序并鉴定, 112个独立的EST在激素诱导初期明显地上调表达, 其中有40.2%的EST是第一次被分离鉴定. GST在植物激素诱导初期的6~24 h高度表达, PRPs在不同的处理中优势表达并表现出不同的表达模式, 表明它们与棉花细胞脱分化关系密切. 棉花SAM代谢途径中假定的GhSAMS, GhSAMDC, GhSAHH和GhACO3被鉴定, qRT-PCR分析表明, 它们的表达水平在激素诱导初期出现两次明显的上升/下降过程, 且GhSAMS和GhSAHH表现出高度正相关, 高表达水平的GhSAMS可能与脱分化细胞重新进入细胞周期密切相关. 组织形态学观察进一步表明, 2,4-D处理条件下的部分细胞在72 h内完成脱分化和分裂过程, SAM-dependent转甲基途径可能通过两次转甲基活性的改变调控棉花细胞脱分化过程. 此外, 差异表达基因在不同处理中的表达模式表明了2,4-D和激动素之间存在着复杂互作关系.  相似文献   

5.
番茄系统抗性反应的信号转导   总被引:4,自引:0,他引:4  
番茄中受伤诱导的蛋白酶抑制剂(PIs)为阐明植物系统性抗性反应信号转导途径的分子基础提供了一个理想的模式系统. 在这一模式系统中, 与日俱增的证据表明多肽信号分子系统素和来源于不饱和脂肪酸的植物激素茉莉酸都具有信号分子的功能, 二者通过一个共同的信号转导途径激活蛋白酶抑制剂和其他抗性相关基因的表达, 从而使植物产生抗性. 然而, 关于这些信号分子如何相互作用而促进细胞间长距离信号传递所知甚少. 对番茄中由系统素/茉莉酸共同介导的蛋白酶抑制剂基因的表达过程进行遗传解析, 为全面认识多肽和氧化脂类信号分子在调控植物系统性抗性反应中的作用机制提供了独特的契机. 以前的研究认为, 系统素是诱导抗性基因表达的长距离运输的信号分子. 但是最近的遗传分析表明, 系统抗性反应中长距离运输的信号分子是茉莉酸而不是系统素, 系统素的作用在于调控茉莉酸的生物合成.  相似文献   

6.
《科学通报》2021,66(22):2820-2831
植物糖代谢是植物科学研究领域的前沿和热点.果糖是植物糖代谢的重要参与者,果糖磷酸化则是果糖进入代谢途径的第一道生化反应.植物果糖激酶是果糖磷酸化的高效酶,调节细胞中的果糖浓度以及有机碳在细胞中的分配及流向,在调控植物生长发育、代谢和响应环境胁迫中发挥了非常重要的作用.近年来,有关植物果糖激酶的研究越来越多,其参与生理和代谢功能的重要性也逐渐凸显,但果糖激酶参与调控的生理代谢功能和分子机制仍有待进一步深入研究.为系统地总结植物果糖激酶的特点及其在生命活动中的重要功能,本文综述了果糖激酶在调控植物生长发育、响应逆境胁迫、光合作用及代谢通路中的重要作用,并提出了今后的研究趋势,以期为植物果糖激酶研究提供参考.  相似文献   

7.
虞莎  王佳伟 《科学通报》2014,(15):1398-1404
自然界生命体的生长发育和形态建成都与"年龄"密不可分."年龄"是一个不可逆的过程,所有生物都将经历幼年期到成年期,最终走向衰老和死亡.在植物体内,一个小分子RNA,miR156控制了幼年期到成年期的转化,它是目前唯一已知的年龄分子标记.miR156的表达量随着年龄的增长而逐渐减少,调控了植物生长发育和环境应答等多个过程.本文综述了植物体内miR156介导的年龄途径的最新研究进展,以及年龄调控miR156表达的分子机制.  相似文献   

8.
水稻乙烯信号转导   总被引:1,自引:0,他引:1  
马彪  陈受宜  张劲松 《科学通报》2010,55(15):1438-1445
乙烯在植物生长发育过程中以及在应对多种环境胁迫的防御反应中起着重要的调控作用.其发挥作用的分子机制在以拟南芥为主的双子叶植物中得到了系统研究,已建立了一个线性信号转导模型.与拟南芥相比,人们对水稻等单子叶植物中乙烯作用机制还了解较少.本文介绍了水稻乙烯信号转导目前取得的研究进展,并与拟南芥及其他植物进行了比较.拟南芥乙烯信号转导通路中的大多数组分在水稻中已找到了同源序列,包括5个乙烯受体,OsCTR1,OsEIN2,OsEIL1和OsERFs等.与拟南芥的同源组分相比,水稻乙烯受体家族各成员在功能上可能更具有特异性.但是OsEIN2和OsEIL1对水稻乙烯反应只表现了有限的调控作用.ERF类转录因子OsERF1和OsEBP-89可能也参与水稻乙烯反应,但它们是否被OsEIN2-OsEIL1介导的信号途径激活并不清楚.鉴于水稻的乙烯反应在多方面与拟南芥不同,推测水稻中或许存在着新的信号传递组分或新机制.筛选水稻乙烯反应突变体并鉴定相应基因将可能初步揭示水稻乙烯信号转导的新机制。  相似文献   

9.
郭婧  何新建 《自然杂志》2024,(2):117-129
真核生物基因组DNA及其所包绕的组蛋白形成的核小体是染色质的基本单位。染色质的形成一方面有助于将基因组DNA组装到细胞核中,另一方面也对基因表达具有重要影响。染色质重塑因子能够利用水解ATP产生的能量调控染色质上核小体的组装、移除、滑动及组蛋白变体的置换等,从而调控基因转录和其他多种生物学过程。真核生物中的染色质重塑因子主要包括SWI/SNF、ISWI、CHD和INO80四类,这些染色质重塑因子往往以多亚基复合体的形式存在。最近的研究工作系统鉴定了植物染色质重塑复合体的亚基组成和功能,揭示了植物染色质重塑复合体相对于酵母及动物染色质重塑复合体的保守性和特异性。对于这些复合体调控基因转录分子机制的认识也在不断深入。这些发现为深入研究染色质重塑在植物生长发育和胁迫应答中的作用奠定了基础。  相似文献   

10.
干旱胁迫下植物体内活性氧的作用机制   总被引:2,自引:0,他引:2  
环境胁迫是农业生产中面临的主要问题之一,其中干旱胁迫对植物的生长发育、农作物减产及环境恶化具有重要影响.面对自然环境危害,植物在形态学、生理学、生物化学、细胞和分子水平等方面已进化形成了一系列的适应性,如植物的避逆性、耐逆性及抗逆性等.因此,了解干旱胁迫对植物的影响以及植物对干旱信号的感知、传递和应答对解决和提高作物产量具有重要的意义.活性氧(ROS)作为植物有氧代谢的副产物,在植物的生长发育过程中发挥着双重的调节作用.正常环境条件下,植物细胞中ROS的产生和清除处于动态平衡,当植物遭遇干旱胁迫刺激后这种平衡被破坏,导致植物体内ROS的产生和代谢发生紊乱, ROS介导的氧化应激能够引起生物膜过氧化、细胞核受损、光合作用受阻、呼吸作用异常等多种有害的细胞学效应.另外, ROS作为重要的信号分子,与其他信号分子,如CaM, G蛋白, MAKP, miRNA及NO之间相互作用共同构成植物体庞大而复杂的信号网络,在植物的生长发育、生理生化反应、细胞程序性死亡(PCD)、激素代谢以及生物胁迫和非生物胁迫应答等方面起着重要的调控作用.此外,植物为防止ROS的过度积累导致的氧化应激对细胞造成氧化损伤,植物细胞已经进化出多种抗氧化机制,如酶促系统和非酶促系统,以清除ROS过度积累所带来的毒害.本文综述了干旱胁迫对植物生长发育、形态结构和生理生化等方面的影响以及植物对干旱胁迫应答之间的相互关系,系统地介绍了干旱胁迫下ROS的类型、产生部位及作用机制,讨论了ROS作为第二信使与其他信号分子之间可能存在的信号网络,旨在进一步为植物体内ROS的作用机制以及如何提高植物抗逆性研究提供理论依据.  相似文献   

11.
本文简要综述了新植物激素——油菜素内酯(brassinolide)的发现过程,生理效应和作用机制研究的进展以及国内外在农业上应用研究的概貌。油菜素内酯有可能成为植物的第六大类激素,在植物生长发育的调控中发挥重要的作用。油菜素内酯在农业上的应用进展很快,显示了广泛的应用潜力,受到人们的普遍重视。在我国也己开始油菜素内酯生理作用及在农业上的应用研究,并取得了一定的进展。  相似文献   

12.
膜蛋白的囊泡转运对维持植物的生长发育、细胞内外的物质交换、细胞识别、免疫应答、信号转导等生物学过程具有重要的生理学意义.近年来,随着超分辨显微技术和蛋白标记方法的更新和进步,对膜蛋白转运相关机制的研究也取得了很大进展.尽管当前对囊泡转运机制的研究手段或技术方法有很多,但关于膜蛋白囊泡转运途径及其研究技术方法缺少系统的总结.本综述首先介绍了膜蛋白囊泡转运所涉及的相关细胞器,全面总结了植物膜蛋白的不同囊泡转运途径,并在此基础上,系统概括了研究植物囊泡转运所使用的化学方法和突变体;最后,展望了植物膜蛋白囊泡转运途径中的研究前景,以期为了解和阐明植物体如何感知及适应环境的调控机制提供一定的思路和见解.  相似文献   

13.
microRNA对植物生长发育和病毒侵染的调控   总被引:2,自引:0,他引:2  
microRNA (miRNA)是一类在真核生物中广泛存在的大小约22 nt的非编码小分子单链RNA, 它可以通过对靶标RNA的剪切或抑制靶标RNA的翻译调控靶标基因的表达. miRNA不仅参与了植物器官的形态建成, 还参与调控植物的信号转导系统等与生长发育相关的基因表达调控过程. 与植物抗病毒RNA沉默途径一样, miRNA途径也受到病毒沉默抑制子的干扰. 本文简述了miRNA介导的RNA调控途径和siRNA介导的RNA沉默路径的异同, 并对近几年miRNA在植物生长发育调控以及与病毒相互作用的研究进展进行了综述, 以求进一步理解真核生物基因表达调控的多层次性及复杂性.  相似文献   

14.
乙烯信号转导通路研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张存立  郭红卫 《自然杂志》2012,34(4):219-228
作为5大类植物激素之一的乙烯一直是科学家关注和研究的焦点。虽然结构简单,但是气态激素乙烯在植物的生长发育以及胁迫反应中具有重要的作用。通过近20年的研究,科学家已经描绘出一条近似线性的乙烯信号转导通路。在模式植物拟南芥中,这条通路的最上游是由一个多基因家族编码的乙烯的5个受体ETR1, ETR2, ERS1, ERS2和EIN4。与之相结合并共同定位于内质网上的是一个类似Raf的蛋白激酶CTR1。在没有乙烯存在的条件下,受体和CTR1的结合能够协同抑制下游乙烯信号。在这两类负调控因子的下游是乙烯信号的正调控因子EIN2。如果EIN2基因突变,即使有高浓度乙烯存在,植物黄化苗也将表现出完全的乙烯不敏感表型,显示出EIN2在乙烯信号通路中的核心地位。在EIN2的下游是乙烯信号的转录因子家族EIN3以及EILs,它们在响应乙烯信号之后会起始乙烯相关基因的表达。研究还发现,乙烯的转录因子受泛素化降解途径调控,负责识别及结合EIN3等转录因子的F box蛋白是EBF1和EBF2。EIN5是一种5’→3’外切核酸酶,它能够通过促进EBF1和EBF2的mRNA的降解来拮抗这两个F box蛋白对EIN3的负反馈调控。最近,有研究表明EIN2同样是一个半衰期很短并经由泛素化降解途径调控的蛋白,而执行调控EIN2任务的是另外两个F box蛋白ETP1和ETP2。虽然人们对于乙烯信号转导通路的认识取得了巨大进步,但是该信号通路的精细调节机制以及乙烯信号与其他植物激素信号之间的交叉反应还需进行更为深入的研究。  相似文献   

15.
膜蛋白作为细胞膜的重要组成部分,通常会发生胞吞循环以调控其在细胞膜上的数量平衡,或响应外界环境的刺激.单分子成像技术是近年来发展起来的,可用于在活细胞条件下对单个分子进行观测和研究的新技术,具有较高的时空分辨率,实现了在纳米和微秒水平上对单个分子的快速实时成像和精确分析.本文结合作者所在实验室取得的研究成果,介绍了利用单分子技术,包括全内反射荧光显微术、荧光相关光谱、荧光互相关光谱分析等方法,对植物几种重要膜蛋白在质膜上的运动特征以及胞吞途径的研究工作,总结了植物中脂筏微区分布及脂筏参与的胞吞途径对膜蛋白功能的调控机制,展望了植物质膜微区的精确划分以及膜蛋白胞吞之后的去向等方面所面临的难题.  相似文献   

16.
在自然界,植物为什么如此千姿百态?为什么有的植物根深叶茂?为什么有的植物根系虽然非常发达,而地上部分却生长得不茂盛?为什么植物生长到一定时期会出现各种各样的分化?经过漫长的岁月,人们不断地研究,现已认识到这些生命活动的规律是由自身的遗传物质——DNA决定的。然而,研究表明,遗传物质的表达、性状的表现又受到体内一类含量极微的物质——内源激素所调控。更确切地说,受到体内不同种内源激素的调控。长期以来,人们首先也只能从外界因素,如温度、光照、营养以及外源的植物生长调节剂来研究这些因子对植物的形态建成的影响,以阐明生长、发育等生命活动的规律。自从1902年,哈勃兰特(Habertandt)预言植物细胞具有“全能性”以来,人们开展了植物的原生质体、细胞、  相似文献   

17.
《科学通报》2021,66(20):2529-2541
蛋白质磷酸化信号网络在植物生长发育和抵御外界环境变化过程中起重要调控作用,解析这些复杂的信号通路及其作用机理一直是生物学研究领域的重点和难点.近年来,已经发展多种方法用于分析蛋白磷酸化的动态变化和功能机理.本文总结了研究植物蛋白磷酸化信号网络的不同方法和最新进展:首先概述磷酸化蛋白的富集纯化技术和检测方法,评价每种方法的优缺点;其次重点讨论研究磷酸化蛋白质组学和互作组学的不同质谱方法和这些方法在植物生物学领域的研究进展,并结合案例分析其应用范围.此外,还归纳和探讨这些技术的不同特性以及在蛋白磷酸化研究中的优势,并对这方面的研究热点作了展望,为深入研究蛋白磷酸化修饰在植物生物学中的分子机制提供重要的指导作用.  相似文献   

18.
磷是植物生长发育所需的大量营养元素之一, 当周围环境中磷缺乏时, 植物往往通过扩大根系范围来增加对土壤中磷的吸收, 同时调节一些生化代谢途径, 增加磷酸酶、有机酸等物质的分泌从而活化土壤中固定的难溶性磷. 本研究利用水稻全基因组寡核苷酸芯片对水稻中早18分别在正常营养条件和低磷胁迫处理条件下6, 24, 72 h 3个时间点的根部和地上部材料进行基因表达谱分析. 研究结果共鉴定出低磷胁迫差异表达基因1207个, 其中根部差异表达基因795个, 地上部差异表达基因450个, 根部和地上部共同出现的差异表达基因38个. 功能分析表明, 这些差异表达基因包括了代谢调节离子转运、信号传导、转录调节、和逆境应答等方面的基因. 同时发现水稻在低磷胁迫后大量转座子基因在转录水平上发生了变化. 这些研究结果为进一步揭示植物磷代谢调控机理的研究提供了有用的信息.  相似文献   

19.
王棚涛  刘浩  滑红杰  王磊  宋纯鹏 《科学通报》2011,56(30):2506-2514
植物激素脱落酸(abscisic acid, ABA)在植物生长发育及适应多种胁迫环境过程中发挥重要作用, 植物在应对这些不断变化的生理需求及环境条件时细胞内ABA 水平也发生相应的变化. 迄今为止, 人们还未完全了解植物体内ABA 水平的精细调控机制. 本文中, 我们的研究表明拟南芥中β-葡萄糖苷酶家族成员之一BGLU10 参与了植物的耐旱性反应. T-DNA 插入纯合突变体bglu10 表现出干旱敏感的表型, 包括快速的水分丧失, 叶片表面温度较野生型低,ABA 含量、β-葡萄糖苷酶活性及ABA 和干旱响应基因的表达量均低于野生型. 与bglu10 突变体相比, BGLU10 的超表达转基因植物比野生型耐旱性更强, 表现为较低的失水速率, 较野生型更高的ABA 含量、β-葡萄糖苷酶活性及ABA 和干旱响应基因的表达水平. 拟南芥叶肉细胞原生质体瞬时表达结果证明BGLU10 蛋白定位于液泡中. 另外, BGLU10 基因在植物多种组织中均有表达, 且受多种非生物胁迫诱导表达, 这些结果暗示了BGLU10 可能在多种胁迫条件下水解ABA-葡萄糖苷(ABA-GE)释放自由ABA, 参与植物对这些胁迫的应答反应.  相似文献   

20.
减数分裂及其基因研究进展   总被引:2,自引:1,他引:2  
王台  丁兆军 《科学通报》2002,47(4):241-248
联会、重组和分离是减数分裂的关键环节,近几年,以酵母为主要模式实验材料,利用突变体等主要研究手段,克隆了一系列调控这些关键环节的基因,并对它们的分子调控机制有了较深入的了解,在这些基因中,一部分在有丝分裂和减数分裂中的功能是保守的,另一部分是减数分裂特异的,许多单基因突变就会导致减数分裂的异常,这为今后通过分子生物学技术调控减数分裂奠定了一定的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号