首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G Salviati  E Biasia  M Aloisi 《Nature》1986,322(6080):637-639
Skeletal muscle fibres, long multinucleated cells, arise by fusion of mononucleated myoblasts to form a myotube that matures into the adult fibre. The two major types of mature fibre, fast and slow fibres, differ physiologically in their rate of isotonic shortening. At the molecular level these type-specific physiological properties are ascribed to different isoforms of myosin, a major protein involved in shortening. Differentiation of fast and slow fibres seems to be under the control of motoneurones, and mature fibres are innervated by only one motoneurone. When rat soleus muscle (SOL, a slow muscle) is dually innervated with a fast nerve, it acquires some properties of a fast muscle, that is, low sensitivity to caffeine and high glycogen content. We report here that in dually innervated soleus muscle the foreign fast nerve induces synthesis of fast isoforms of myosin, but only in the segment of the muscle fibre that is close to the foreign endplate. The localized influence of the nerve endplates suggest that factors controlling the phenotypic expression of the muscle fibre have a short range of activity.  相似文献   

2.
E M Callaway  J M Soha  D C Van Essen 《Nature》1987,328(6129):422-426
During normal postnatal maturation, mammalian muscles undergo an orderly process of synapse elimination, whereby each muscle fibre loses all but one of the multiple inputs with which it is endowed at birth. Experimental perturbations that increase or decrease the overall activity of nerve and/or muscle cause a corresponding increase or decrease in the overall rate of neuromuscular synapse elimination. On other grounds it has been suggested that competition among motor neurons is important in determining which synapses survive and which are eliminated. Would a difference in activity among the terminals at the same endplate affect the outcome of the competition and not just its rate? We investigated this issue by blocking activity for four days in a small fraction of the motor neurons innervating the neonatal rabbit soleus muscle. Twitch tensions of motor units were subsequently measured for both the active and inactive populations of neurons to assess whether the inactive neurons had lost fewer or more synapses than is normal. We found that inactive motor neurons have a significant advantage compared to active counterparts in control experiments, a finding opposite to that expected if the neuromuscular junction operated by classical 'Hebbian' rules of competition.  相似文献   

3.
A central role for denervated tissues in causing nerve sprouting   总被引:3,自引:0,他引:3  
M C Brown  R L Holland 《Nature》1979,282(5740):724-726
One of the oldest known forms of neuronal plasticity is the ability of peripheral nerves to grow and form functional connections after damage to neighbouring axons. Yet the source of the signal which elicits this "sprouting" remains unknown. In mammalian muscles, paralysis-which gives rise to many of the changes which occur in denervated muscles-causes motor nerve terminals to sprout. Could the inactive muscle fibres (rather than nerve degeneration products, another likely source) be responsible for some of the sprouting found in partial denervation? We confirm in this paper that direct stimulation of a partially denervated muscle inhibits sprouting and show that stimulation does so by activating the denervated fibres. Consequently after partial denervation the same signal as that which causes terminal sprouting in a paralysed muscle is able to spread from the denervated muscle fibres to the nerves on the innervated fibres and initiate terminal sprouting.  相似文献   

4.
Endogenous electric field around muscle fibres depends on the Na+-K+ pump   总被引:2,自引:0,他引:2  
We describe here experiments which reveal a new physiological specialization in the endplate (synaptic) region of skeletal muscle fibres. Using a vibrating microelectrode which can detect small currents flowing in extracellular fluid, we have found that the membrane in the endplate region behaves as though a steady positive current is generated in this location. Current re-enters the fibre in the extrajunctional region. Further experiments show that this current is dependent on the activity of the sodium pump. The electric field created by this current may be important for long-term interactions between muscle and nerve.  相似文献   

5.
6.
S Rotzler  H Schramek  H R Brenner 《Nature》1991,349(6307):337-339
During formation of the neuromuscular junction, acetylcholine receptors in the endplate membrane become metabolically stabilized under neural control, their half-life increasing from about 1 day to about 10 days. The metabolic stability of the receptors is regulated by the electrical activity induced in the muscle by innervation. We report here that metabolic stabilization of endplate receptors but not of extrajunctional receptors can be induced in the absence of muscle activity if muscles are treated with the calcium ionophore A23187. Acetylcholine receptor stabilization was also induced by culturing non-stimulated muscle in elevated K+ with the Ca2+ channel activator (+)-SDZ202-791. Conversely, activity-dependent receptor stabilization is prevented in muscle stimulated in the presence of the Ca2+ channel blockers (+)-PN200-110 or D-600. Treatment of muscles with ryanodine, which induces Ca2+ release from the sarcoplasmic reticulum in the absence of activity, does not cause stabilization of junctional receptors. Evidently, muscle activity induces metabolic acetylcholine receptor stabilization by way of an influx of Ca2+ ions through dihydropyridine-sensitive Ca2+ channels in the endplate membrane, whereas Ca2+ released from the sarcoplasmic reticulum is ineffective in this developmental process.  相似文献   

7.
Na channels in skeletal muscle concentrated near the neuromuscular junction   总被引:2,自引:0,他引:2  
K G Beam  J H Caldwell  D T Campbell 《Nature》1985,313(6003):588-590
Neuronal function depends crucially on the spatial segregation of specific membrane proteins, particularly the segregation associated with sites of synaptic contact. Understanding the factors governing this localization of proteins is a major goal of cellular neurobiology. A conspicuous example of synaptic specialization is the almost exclusive localization of vertebrate skeletal muscle acetylcholine (ACh) receptors to the subsynaptic membrane of the neuromuscular junction (for example, refs 1,2). The localization of other membrane proteins in skeletal muscle has been much less studied, but a knowledge of their distribution is crucial for understanding the factors governing regional specialization. We have explored the distribution in muscle of the voltage-gated Na channel responsible for the action potential using the loose patch-clamp technique, and have measured Na currents in 5-10 micron-diameter membrane patches as a function of distance from the end plate region of snake and rat muscle fibres. Here we report that the Na current density immediately adjacent to the endplate is 5-10-fold higher than at regions away from the endplate. The increased Na current density falls off rapidly with distance, reaching the background level 100-200 micron from the endplate. Although one might expect ACh receptors to be concentrated near the region of ACh release, such a concentration for Na channels, which propagate the impulse throughout the length of the cell, is surprising and suggests that factors similar to those responsible for concentrating ACh receptors at the endplate also operate to concentrate Na channels.  相似文献   

8.
The original experiment of Buller et al. and the many subsequent confirmatory reports clearly show that the time-to-peak tension and many other speed-related parameters of slow and fast muscle fibres are dictated by the motoneurone. It has been concluded that the motoneurone exerts this control of the physiological and associated biochemical properties by the frequency at which it excites the muscle fibre. However, no studies have been reported on the fatigue properties and the associated biochemical characteristics after cross-reinnervation. Based on the 'size principle' of motoneurones, it would be reasonable to assume that a muscle fibre reinnervated by a small motoneurone would be active often and that this would be manifested biochemically as an elevated oxidative capacity. Also, it has been shown repeatedly that the mitochondrial content of a muscle fibre can be modified by daily endurance type exercise. Thus, it would seem that the motoneurone at least indirectly also controls the mitochondrial content of a muscle fibre by controlling the degree of activity. We have now tested this hypothesis using self- and cross-reinnervated muscles in cats. We found that fast- and slow-twitch muscles retained their characteristic fatigue resistance properties regardless of whether the nerve to which they had become connected had originally innervated a fatigue-resistant or relatively fatiguable muscle.  相似文献   

9.
为提高门式刚架端板连接点的可靠性,基于有限元法,建立了螺栓预拉力的三维有限元模型,分析门式刚架端板连接Γ形梁柱节点的力学性能,得到不同端板厚度和节点构造形式。结果表明:端板竖放比端板横放节点有更高的承载能力和刚度,但端板竖放时对螺栓的受力及强度要求较高,对连接处的整体强度不利,易造成螺栓强度不足,故建议采用端板横放节点构造形式。该研究为门式钢架端板的工程应用提供了参考。  相似文献   

10.
Suppression of sprouting at the neuromuscular junction by immune sera   总被引:1,自引:0,他引:1  
M E Gurney 《Nature》1984,307(5951):546-548
Injury of afferent motor axons or pathological loss of motoneurones from the spinal cord causes the remaining axons within a muscle to sprout and to reinnervate the denervated muscle fibres. Sprouting occurs at two sites along intramuscular axons, at nodes of Ranvier (nodal sprouting) and at the neuromuscular junction (terminal sprouting). Terminal sprouting is also produced by treatment with botulinum toxin and by other agents that render muscle inactive. The muscle probably provides a signal for terminal sprouting as restoration of muscle activity by direct electrical stimulation prevents sprouting. Such a signal might be a local change on the muscle fibre surface or a 'soluble' sprouting factor, although the failure to induce terminal sprouting in one muscle by denervating adjacent muscles argues against the latter hypothesis. I now report that rabbit antisera against a 56,000 (56K)-molecular weight protein secreted by denervated rat muscle suppress botulinum toxin-induced terminal sprouting in the mouse gluteus muscle. An immune response against this protein has also been detected in serum of patients with amyotrophic lateral sclerosis (ALS), a disease in which loss of motoneurones from the spinal cord is not accompanied by the degree of sprouting and reinnervation seen in other motoneurone diseases.  相似文献   

11.
J D Kocsis  S G Waxman 《Nature》1983,304(5927):640-642
Mammalian myelinated peripheral nerve fibres display a remarkable degree of regeneration following a discrete nerve crush. Nerve crush disrupts the axon cylinder, but leaves the basement membrane of the Schwann cell intact. These intact endoneurial tubes provide pathways to guide the regenerating axon sprouts. After contact with the periphery is established, the regenerating fibres enlarge and myelinate. Conduction velocity recovers to nearly normal and functional recovery is, in many cases, nearly complete. A distinct feature of normal mature myelinated axons is the insensitivity of these fibres to potassium channel blocking agents. In contrast, immature myelinated axons are exquisitely sensitive to the K channel blocking agent 4-aminopyridine (4-AP). Application of 4-AP to immature myelinated fibres leads to a delayed membrane depolarization with action potential burst activity in response to a single stimulus. This sensitivity to 4-AP is attenuated as the fibres mature. Previous studies have demonstrated a sensitivity to 4-AP in regenerating nerve fibres; this sensitivity differentiates the regenerating axon segments from their normal parent axon segments. Such studies have not, however, examined the question of whether regenerated fibres, which have re-established peripheral connections and are functionally active, fully recapitulate the functional organization of normal mature myelinated fibres. We demonstrate here that while sensitivity to the potassium channel blocking agents 4-AP and 3, 4-diaminopyridine (3, 4-DAP) is lost in the normal course of myelinated axon maturation, this property is present in long-term regenerated axons. This suggests that long-term regenerated mammalian axons are characterized by a functional organization that bears a closer resemblance to that of immature myelinated fibres than to that of adult myelinated fibres.  相似文献   

12.
J Lai  J Jedrzejczyk  J A Pizzey  D Green  E A Barnard 《Nature》1986,321(6065):72-74
The 'heavy', collagen-tailed form of acetylcholinesterase (AChE), having a s(0)20,w of 16S in mammals, occurs at vertebrate muscle endplates and has been widely regarded as a marker of neuronal influence on muscle in vivo. However, an interesting exception has been described by Bacou et al., in a previous report in Nature. They found, in a slow-twitch muscle of the rabbit, that after denervation the 16S form of AChE increases markedly, rather than disappearing. Such a phenomenon would modify current concepts of neuromuscular regulation. We report here, however, that this exception is apparent rather than real in terms of endplate AChE regulation.  相似文献   

13.
Membrane currents that govern smooth muscle contraction in a ctenophore   总被引:1,自引:0,他引:1  
Ctenophores are transparent marine organisms that swim by means of beating cilia; they are the simplest animals with individual muscle fibres. Predatory species, such as Beroe ovata, have particularly well-developed muscles and are capable of an elaborate feeding response. When Beroe contacts its prey, the mouth opens, the body shortens, the pharynx expands, the prey is engulfed and the lips then close tightly. How this sequence, which lasts 1 s, is accomplished is unclear. The muscles concerned are structurally uniform and are innervated at each end by a neuronal nerve net with no centre for coordination. Isolated muscle cells studied under voltage-clamp provide a solution to this puzzle. We find that different groups of muscle cells have different time-dependent membrane currents. Because muscle contraction depends upon calcium entry during each action potential, these different currents produce different patterns of contraction. We conclude that in a simple animal such as a ctenophore, a sophisticated set of membrane conductances can compensate for the absence of an elaborate system of effectors.  相似文献   

14.
W Thompson 《Nature》1983,302(5909):614-616
The synaptic connections among the cells of the vertebrate nervous system undergo extensive rearrangements early in development. During their initial growth, neurones apparently form synaptic connections with an excessive number of targets, later retracting a portion of these synapses in establishing the adult neural circuits. Because of the profound effects which experience has upon the developing nervous system, a question of considerable interest has been the role which the functional use of these developing synapses might play in determining the final pattern of connectivity. At the neuromuscular junction the early changes in synaptic connections are well documented, and here questions about the importance of function can be relatively easily addressed. Mammalian skeletal muscle fibres experience a perinatal period of synapse elimination so that all but one of several synapses formed on each muscle fibre are lost. This synapse elimination is sensitive to alterations of neuromuscular use or activity. Reduction of muscle use by tenotomy or by paralysis of the muscle with drugs blocking nerve impulse conduction or neuromuscular transmission delays or even prevents synapse loss, while increased use produced by stimulation of the muscle nerve apparently accelerates the rate at which synapses are lost. I report here a further examination of the role of neuromuscular activity in synapse elimination. I show that chronic neuromuscular stimulation accelerates synapse elimination but that this acceleration is dependent on the temporal pattern in which the stimuli are presented: brief stimulus trains containing 100 Hz bursts of stimuli produce this acceleration whereas the same number of stimuli presented continuously at 1 Hz do not. Furthermore, the 100 Hz activity pattern which is effective in altering synapse elimination also alters two other muscle properties: the sensitivity of the muscle fibers to acetylcholine and the 'speed' of muscle contractions. These findings suggest that the ability of muscle fibres to maintain more than one nerve terminal, like other muscle properties, is sensitive to the pattern of muscle use rather than just the total amount of use.  相似文献   

15.
Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilizing protein dystrophin. Dystrophin-deficient muscle fibres are fragile and susceptible to an influx of Ca(2+), which activates inflammatory and muscle degenerative pathways. At present there is no cure for DMD, and existing therapies are ineffective. Here we show that increasing the expression of intramuscular heat shock protein 72 (Hsp72) preserves muscle strength and ameliorates the dystrophic pathology in two mouse models of muscular dystrophy. Treatment with BGP-15 (a pharmacological inducer of Hsp72 currently in clinical trials for diabetes) improved muscle architecture, strength and contractile function in severely affected diaphragm muscles in mdx dystrophic mice. In dko mice, a phenocopy of DMD that results in severe spinal curvature (kyphosis), muscle weakness and premature death, BGP-15 decreased kyphosis, improved the dystrophic pathophysiology in limb and diaphragm muscles and extended lifespan. We found that the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA, the main protein responsible for the removal of intracellular Ca(2+)) is dysfunctional in severely affected muscles of mdx and dko mice, and that Hsp72 interacts with SERCA to preserve its function under conditions of stress, ultimately contributing to the decreased muscle degeneration seen with Hsp72 upregulation. Treatment with BGP-15 similarly increased SERCA activity in dystrophic skeletal muscles. Our results provide evidence that increasing the expression of Hsp72 in muscle (through the administration of BGP-15) has significant therapeutic potential for DMD and related conditions, either as a self-contained therapy or as an adjuvant with other potential treatments, including gene, cell and pharmacological therapies.  相似文献   

16.
W J Thompson  L A Sutton  D A Riley 《Nature》1984,309(5970):709-711
Skeletal motor neurones innervate the specialized 'types' of fibres comprising most mammalian muscles in a characteristic fashion: each motor neurone forms a 'motor unit' by innervating a set of fibres all of the same type. Because the type expression of adult muscle fibres is plastic and apparently controlled by their innervation, each motor neurone is thought to impose a common type differentiation on all the fibres in its motor unit. However, the situation in developing muscles cannot be this simple. Muscle fibres in neonates receive synaptic input from several motor neurones and achieve the adult, single innervation only after a period of 'synapse elimination. Despite this polyneuronal innervation, differentiated fibre types are present in neonatal muscles. This means either that the motor neurones polyneuronally innervate fibres in a random fashion and type expression is not determined by innervation or that the polyneuronal innervation is ordered in such a way that each fibre could receive unambiguous instructions for type differentiation. We have investigated these possibilities here by determining the fibre type composition of motor units in neonatal rat soleus muscle. We find that even during the time of polyneuronal innervation each motor neurone confines its innervation to largely one of two fibre types present in the muscle. Therefore, some mechanism during early development segregates the synapses of two groups of soleus motor neurones onto two separate populations of soleus muscle fibres.  相似文献   

17.
J F Fiekers  I G Marshall  R L Parsons 《Nature》1979,281(5733):680-682
Antibiotic-induced muscle paralysis has frequently been found in both experimental animals and man with three distinct classes of antibiotic: (1) streptomycin and related aminoglycoside compounds, (2) polymyxins and (3) tetracyclines. Recently lincomycin and its chemical congener, clindamycin, have been reported to produce muscle paralysis which has different characteristics from those seen with other classes of antibiotic. Although closely related in chemical structure, lincomycin and clindamycin also seem to produce muscle paralysis by different mechanisms. Clindamycin is considered to exert a direct depressant action on muscle contractility whereas the action of lincomycin is considered to be primarily a depression of neuromuscular transmission. We report here that each of these antibiotics had a significant but different influence on endplate channel behaviour. Clindamycin increased the rate of miniature endplate current (m.e.p.c.) decay and reduced its voltage sensitivity without altering its exponential nature. Lincomycin split m.e.p.c. decay into an initial rapid phase followed by a prolonged phase.  相似文献   

18.
A J Harborne  M E Smith 《Nature》1979,282(5734):85-87
The entire surface membrane of denervated skeletal muscle is sensitive to the neuromuscular transmitter, acetylcholine (ACh), whereas in innervated muscle only the junctional area is sensitive. It has been proposed that this difference is due to a 'trophic' effect exerted by ACh in innervated muscle to keep the extrajunctional regions of the surface membrane insensitive to its depolarising action. Several studies have demonstrated an agonist-induced potentiation of ACh sensitivity, followed by desensitisation, at the endplate region of normal muscles. The potentiation has been attributed to a cooperative action of ACh on the receptors. Desensitisation of the extrajunctional regions of denervated muscles by ACh has also been described. We now provide evidence that the transmitter itself potentiates the ACh contracture and depolarisation responses of the denervated muscles of the rat in vitro and that it produces this effect by increasing the number of available ACh receptors on the surface membrane.  相似文献   

19.
R K Ho  E E Ball  C S Goodman 《Nature》1983,301(5895):66-69
During embryonic development, muscles differentiate in the appropriate places and motoneurone growth cones find the appropriate muscles; both events occur concurrently and with remarkable specificity. What are the cellular interactions that orchestrate this coordinated development of nerve and muscle? In the development of vertebrate skeletal muscles, motoneurone growth cones arrive in the periphery along stereotyped routes and enter the appropriately located masses of mesodermal cells usually before differentiated muscle fibres appear and before the masses cleave into separate muscles. We find that a similar sequence of events occurs in the grasshopper embryo. We are interested in how mesodermal cells become organized into the appropriate muscles and what guides motoneurone growth cones to their appropriate targets. Fortunately, in the grasshopper embryo the mesodermal cells in the periphery and motoneurones in the central nervous system (CNS) are large, accessible and in many cases individually identifiable from early in their development. We report here the discovery of a class of large mesodermal cells, which we call muscle pioneers, that arise early in development when the embryonic environment is relatively simple and distances short. By their growth and association with particular sites along the ectoderm, the muscle pioneers appear to erect a scaffold for later developing muscles and motoneurone growth cones.  相似文献   

20.
P Fossier  G Baux  L Tauc 《Nature》1983,301(5902):710-712
Most of the effects of acetylcholinesterase (AChE) on synaptic transmission are considered to be related to its acetylcholine (ACh) hydrolysing properties. This is clearly apparent from changes which occur in the characteristics of the miniature endplate potential and of the endplate potential at neuromuscular junctions when AChE is inhibited1-4 and during the development of enzymatic AChE activity at maturing synapses5. However, we report here that after inhibiting AChE in a cholinergic synapse in Aplysia, we found an increase not only in postsynaptic responses to presynaptic stimulation and to ionophoretic application of ACh on postsynaptic receptors, but also to ionophoretic application of carbachol. This could not be explained by the inhibition of the ACh hydrolysing function of the enzyme, as carbachol is not hydrolysed by AChE. A possible explanation of these observations is that inhibition of the enzyme affects a property of the ACh receptor (AChR) itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号