首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li W  Tu D  Brunger AT  Ye Y 《Nature》2007,446(7133):333-337
In eukaryotic cells, many short-lived proteins are conjugated with Lys 48-linked ubiquitin chains and degraded by the proteasome. Ubiquitination requires an activating enzyme (E1), a conjugating enzyme (E2) and a ligase (E3). Most ubiquitin ligases use either a HECT (homologous to E6-associated protein C terminus) or a RING (really interesting new gene) domain to catalyse polyubiquitination, but the mechanism of E3 catalysis is poorly defined. Here we dissect this process using mouse Ube2g2 (E2; identical at the amino acid level to human Ube2g2) and human gp78 (E3), an endoplasmic reticulum (ER)-associated conjugating system essential for the degradation of misfolded ER proteins. We demonstrate by expressing recombinant proteins in Escherichia coli that Ube2g2/gp78-mediated polyubiquitination involves preassembly of Lys 48-linked ubiquitin chains at the catalytic cysteine of Ube2g2. The growth of Ube2g2-anchored ubiquitin chains seems to be mediated by an aminolysis-based transfer reaction between two Ube2g2 molecules that each carries a ubiquitin moiety in its active site. Intriguingly, polyubiquitination of a substrate can be achieved by transferring preassembled ubiquitin chains from Ube2g2 to a lysine residue in a substrate.  相似文献   

2.
Wenzel DM  Lissounov A  Brzovic PS  Klevit RE 《Nature》2011,474(7349):105-108
Although the functional interaction between ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s) is essential in ubiquitin (Ub) signalling, the criteria that define an active E2-E3 pair are not well established. The human E2 UBCH7 (also known as UBE2L3) shows broad specificity for HECT-type E3s, but often fails to function with RING E3s in vitro despite forming specific complexes. Structural comparisons of inactive UBCH7-RING complexes with active UBCH5-RING complexes reveal no defining differences, highlighting a gap in our understanding of Ub transfer. Here we show that, unlike many E2s that transfer Ub with RINGs, UBCH7 lacks intrinsic, E3-independent reactivity with lysine, explaining its preference for HECTs. Despite lacking lysine reactivity, UBCH7 exhibits activity with the RING-in-between-RING (RBR) family of E3s that includes parkin (also known as PARK2) and human homologue of ariadne (HHARI; also known as ARIH1). Found in all eukaryotes, RBRs regulate processes such as translation and immune signalling. RBRs contain a canonical C3HC4-type RING, followed by two conserved Cys/His-rich Zn(2+)-binding domains, in-between-RING (IBR) and RING2 domains, which together define this E3 family. We show that RBRs function like RING/HECT hybrids: they bind E2s via a RING domain, but transfer Ub through an obligate thioester-linked Ub (denoted ~Ub), requiring a conserved cysteine residue in RING2. Our results define the functional cadre of E3s for UBCH7, an E2 involved in cell proliferation and immune function, and indicate a novel mechanism for an entire class of E3s.  相似文献   

3.
拟南芥 AtTR1 在盐胁迫应答中的功能初探   总被引:1,自引:0,他引:1  
本研究主要探索油菜中E3泛素连接酶BnTR1在拟南芥中的同源基因AtTR1(At3g47550)的功能.通过体外泛素化实验证明AtTR1具有E3连接酶活性.基因表达分析显示该基因受200mmol/L NaCl显著诱导,说明该基因可能在响应盐胁迫中发挥一定的功能.为了更深入的探究该基因在植物耐盐中的作用,构建了植物表达载体pZH01-AtTR1转化突变体.在含有潮霉素的培养基上筛选阳性苗,并利用荧光定量PCR检测表明AtTR1基因已经成功转入突变体中.  相似文献   

4.
Jin J  Li X  Gygi SP  Harper JW 《Nature》2007,447(7148):1135-1138
Modification of proteins with ubiquitin or ubiquitin-like proteins (UBLs) by means of an E1-E2-E3 cascade controls many signalling networks. Ubiquitin conjugation involves adenylation and thioesterification of the carboxy-terminal carboxylate of ubiquitin by the E1-activating enzyme Ube1 (Uba1 in yeast), followed by ubiquitin transfer to an E2-conjugating enzyme through a transthiolation reaction. Charged E2s function with E3s to ubiquitinate substrates. It is currently thought that Ube1/Uba1 is the sole E1 for charging of E2s with ubiquitin in animals and fungi. Here we identify a divergent E1 in vertebrates and sea urchin, Uba6, which specifically activates ubiquitin but not other UBLs in vitro and in vivo. Human Uba6 and Ube1 have distinct preferences for E2 charging in vitro, and their specificity depends in part on their C-terminal ubiquitin-fold domains, which recruit E2s. In tissue culture cells, Uba6 is required for charging a previously uncharacterized Uba6-specific E2 (Use1), whereas Ube1 is required for charging the cell-cycle E2s Cdc34A and Cdc34B. Our data reveal unexpected complexity in the pathways that control the conjugation of ubiquitin, in which dual E1s orchestrate the charging of distinct cohorts of E2s.  相似文献   

5.
Wiener R  Zhang X  Wang T  Wolberger C 《Nature》2012,483(7391):618-622
Histones are ubiquitinated in response to DNA double-strand breaks (DSB), promoting recruitment of repair proteins to chromatin. UBC13 (also known as UBE2N) is a ubiquitin-conjugating enzyme (E2) that heterodimerizes with UEV1A (also known as UBE2V1) and synthesizes K63-linked polyubiquitin (K63Ub) chains at DSB sites in concert with the ubiquitin ligase (E3), RNF168 (ref. 3). K63Ub synthesis is regulated in a non-canonical manner by the deubiquitinating enzyme, OTUB1 (OTU domain-containing ubiquitin aldehyde-binding protein 1), which binds preferentially to the UBC13~Ub thiolester. Residues amino-terminal to the OTU domain, which had been implicated in ubiquitin binding, are required for binding to UBC13~Ub and inhibition of K63Ub synthesis. Here we describe structural and biochemical studies elucidating how OTUB1 inhibits UBC13 and other E2 enzymes. We unexpectedly find that OTUB1 binding to UBC13~Ub is allosterically regulated by free ubiquitin, which binds to a second site in OTUB1 and increases its affinity for UBC13~Ub, while at the same time disrupting interactions with UEV1A in a manner that depends on the OTUB1 N terminus. Crystal structures of an OTUB1-UBC13 complex and of OTUB1 bound to ubiquitin aldehyde and a chemical UBC13~Ub conjugate show that binding of free ubiquitin to OTUB1 triggers conformational changes in the OTU domain and formation of a ubiquitin-binding helix in the N terminus, thus promoting binding of the conjugated donor ubiquitin in UBC13~Ub to OTUB1. The donor ubiquitin thus cannot interact with the E2 enzyme, which has been shown to be important for ubiquitin transfer. The N-terminal helix of OTUB1 is positioned to interfere with UEV1A binding to UBC13, as well as with attack on the thiolester by an acceptor ubiquitin, thereby inhibiting K63Ub synthesis. OTUB1 binding also occludes the RING E3 binding site on UBC13, thus providing a further component of inhibition. The general features of the inhibition mechanism explain how OTUB1 inhibits other E2 enzymes in a non-catalytic manner.  相似文献   

6.
Reverter D  Lima CD 《Nature》2005,435(7042):687-692
SUMO-1 (for small ubiquitin-related modifier) belongs to the ubiquitin (Ub) and ubiquitin-like (Ubl) protein family. SUMO conjugation occurs on specific lysine residues within protein targets, regulating pathways involved in differentiation, apoptosis, the cell cycle and responses to stress by altering protein function through changes in activity or cellular localization or by protecting substrates from ubiquitination. Ub/Ubl conjugation occurs in sequential steps and requires the concerted action of E2 conjugating proteins and E3 ligases. In addition to being a SUMO E3, the nucleoporin Nup358/RanBP2 localizes SUMO-conjugated RanGAP1 to the cytoplasmic face of the nuclear pore complex by means of interactions in a complex that also includes Ubc9, the SUMO E2 conjugating protein. Here we describe the 3.0-A crystal structure of a four-protein complex of Ubc9, a Nup358/RanBP2 E3 ligase domain (IR1-M) and SUMO-1 conjugated to the carboxy-terminal domain of RanGAP1. Structural insights, combined with biochemical and kinetic data obtained with additional substrates, support a model in which Nup358/RanBP2 acts as an E3 by binding both SUMO and Ubc9 to position the SUMO-E2-thioester in an optimal orientation to enhance conjugation.  相似文献   

7.
Dioxin receptor is a ligand-dependent E3 ubiquitin ligase   总被引:2,自引:0,他引:2  
  相似文献   

8.
Role of arginine-tRNA in protein degradation by the ubiquitin pathway   总被引:4,自引:0,他引:4  
S Ferber  A Ciechanover 《Nature》1987,326(6115):808-811
Degradation of intracellular proteins through the ubiquitin and ATP-dependent proteolysis pathway involves several steps. Initially, ubiquitin is covalently linked to the proteolytic substrate in an ATP-requiring reaction. Proteins marked by ubiquitin may then be selectively lysed in a reaction that also requires ATP (for reviews see refs 1-3). A major question concerns the structural features of a protein that make it a specific substrate for ubiquitin-mediated degradation. It was shown that a free alpha-NH2 group is one important feature of the protein structure recognized by the ubiquitin ligation system, and that the half-life in vivo of a protein with an exposed amino terminus depends on its amino terminal residue. We have previously demonstrated that transfer RNA (tRNA) is essential for conjugation of ubiquitin and for the subsequent degradation of proteins with acidic amino termini (aspartate or glutamate). We now show that tRNA is required for post-translational conjugation of arginine to acidic amino termini of proteins, a modification that is essential for their degradation by the ubiquitin pathway.  相似文献   

9.
Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex   总被引:39,自引:0,他引:39  
SCF complexes are the largest family of E3 ubiquitin-protein ligases and mediate the ubiquitination of diverse regulatory and signalling proteins. Here we present the crystal structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF complex, which shows that Cul1 is an elongated protein that consists of a long stalk and a globular domain. The globular domain binds the RING finger protein Rbx1 through an intermolecular beta-sheet, forming a two-subunit catalytic core that recruits the ubiquitin-conjugating enzyme. The long stalk, which consists of three repeats of a novel five-helix motif, binds the Skp1-F boxSkp2 protein substrate-recognition complex at its tip. Cul1 serves as a rigid scaffold that organizes the Skp1-F boxSkp2 and Rbx1 subunits, holding them over 100 A apart. The structure suggests that Cul1 may contribute to catalysis through the positioning of the substrate and the ubiquitin-conjugating enzyme, and this model is supported by Cul1 mutations designed to eliminate the rigidity of the scaffold.  相似文献   

10.
Xu L  Wei Y  Reboul J  Vaglio P  Shin TH  Vidal M  Elledge SJ  Harper JW 《Nature》2003,425(6955):316-321
Programmed destruction of regulatory proteins through the ubiquitin-proteasome system is a widely used mechanism for controlling signalling pathways. Cullins are proteins that function as scaffolds for modular ubiquitin ligases typified by the SCF (Skp1-Cul1-F-box) complex. The substrate selectivity of these E3 ligases is dictated by a specificity module that binds cullins. In the SCF complex, this module is composed of Skp1, which binds directly to Cul1, and a member of the F-box family of proteins. F-box proteins bind Skp1 through the F-box motif, and substrates by means of carboxy-terminal protein interaction domains. Similarly, Cul2 and Cul5 interact with BC-box-containing specificity factors through the Skp1-like protein elongin C. Cul3 is required for embryonic development in mammals and Caenorhabditis elegans but its specificity module is unknown. Here we report the identification of a large family of BTB-domain proteins as substrate-specific adaptors for C. elegans CUL-3. Biochemical studies using the BTB protein MEL-26 and its genetic target MEI-1 (refs 12, 13) indicate that BTB proteins merge the functional properties of Skp1 and F-box proteins into a single polypeptide.  相似文献   

11.
李双月  苏华波 《广西科学》2018,25(3):262-267,278
Neural precursor cell-expressed developmentally downregulated 8(NEDD8)是类泛素蛋白家族的一员,其结构与泛素相似,通过E1激活酶、E2结合酶和E3连接酶等酶促级联反应对蛋白进行翻译后修饰,这一过程即为neddylation。Neddylation异常已被证实与癌症、神经退行性疾病和先天性心脏病等多种疾病密切相关。近年来,neddylation和deneddylation(底物上的NEDD8在deneddylation酶的作用下被去除,称为deneddylation)在心血管系统中的作用备受关注,本文将主要阐述neddylation的生物学过程及其在心脏生物学中的作用。  相似文献   

12.
拟南芥基因AtHHR3编码一个RING结构域的E3连接酶,通过生物信息学分析发现其可能参与植物热胁迫相关的应答.为了探索其具体的功能,构建了AtHHR3互补株系,并在DNA水平和转录水平分别鉴定了AtHHR3互补株系,用RT-PCR技术分析了AtHHR3在热处理条件下基因表达的变化情况.在热胁迫下分析了野生型、突变体athhr3、回复株系幼苗存活以及种子萌发的表型变化情况,发现突变体athhr3表现出对热胁迫的耐受性,并检测了热胁迫下不同株系的HSF、HSP等热相关基因的转录水平的变化,初步的研究表明拟南芥基因AtHHR3负调控植物对热胁迫的耐受性.  相似文献   

13.
TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2   总被引:18,自引:0,他引:18  
Li X  Yang Y  Ashwell JD 《Nature》2002,416(6878):345-347
Tumour necrosis factor-alpha (TNF-alpha) is a proinflammatory mediator that exerts its biological functions by binding two TNF receptors (TNF-RI and TNF-RII), which initiate biological responses by interacting with adaptor and signalling proteins. Among the signalling components that associate with TNF receptors are members of the TNF-R-associated factor (TRAF) family. TRAF2 is required for TNF-alpha-mediated activation of c-Jun N-terminal kinase (JNK), contributes to activation of NF-kappaB, and mediates anti-apoptotic signals,. TNF-RI and TNF-RII signalling complexes also contain the anti-apoptotic ('inhibitor of apoptosis') molecules c-IAP1 and c-IAP2 (refs 5, 6), which also have RING domain-dependent ubiquitin protein ligase (E3) activity. The function of IAPs in TNF-R signalling is unknown. Here we show that binding of TNF-alpha to TNF-RII induces ubiquitination and proteasomal degradation of TRAF2. Although c-IAP1 bound TRAF2 and TRAF1 in vitro, it ubiquitinated only TRAF2. Expression of wild-type c-IAP1, but not an E3-defective mutant, resulted in TRAF2 ubiquitination and degradation. Moreover, E3-defective c-IAP1 prevented TNF-alpha-induced TRAF2 degradation and inhibited apoptosis. These findings identify a physiologic role for c-IAP1 and define a mechanism by which TNF-RII-regulated ubiquitin protein ligase activity can potentiate TNF-induced apoptosis.  相似文献   

14.
15.
Turner GC  Du F  Varshavsky A 《Nature》2000,405(6786):579-583
  相似文献   

16.
Bovine infected-cell protein 0 (BICP0) encoded by bovine herpes virus 1 (BHV-1) immediate early gene is necessary for efficient productive infection, in a large part,because it activates all 3 classes of BHV-1 genes. It also has the ability to efficiently transactivate promoters that are not derived from BHV-1. To investigate the mechanism by which BICP0 achieves these effects, we expressed and purified BICP0 and its different mutants in E. coil In vitro assays showed that both full-length BICP0 and its isolated RING finger domain induce the accumulation of polyubiquitin chains. Mutations within the RING finger region that abolish the in vitro ubiquitination activity also cause severe reductions in BICP0 activity in other assays. Based on these, we conclude that BICP0 has the potential to act as an E3 ubiquitin ligase during viral infection and its RING finger domain is necessary for this function. These strongly support the hypothesis that BICPO might influence virus infection through its ability to interact with the ubiquitin-proteasome pathway.  相似文献   

17.
Yu B  Edstrom WC  Benach J  Hamuro Y  Weber PC  Gibney BR  Hunt JF 《Nature》2006,439(7078):879-884
Nucleic acid damage by environmental and endogenous alkylation reagents creates lesions that are both mutagenic and cytotoxic, with the latter effect accounting for their widespread use in clinical cancer chemotherapy. Escherichia coli AlkB and the homologous human proteins ABH2 and ABH3 (refs 5, 7) promiscuously repair DNA and RNA bases damaged by S(N)2 alkylation reagents, which attach hydrocarbons to endocyclic ring nitrogen atoms (N1 of adenine and guanine and N3 of thymine and cytosine). Although the role of AlkB in DNA repair has long been established based on phenotypic studies, its exact biochemical activity was only elucidated recently after sequence profile analysis revealed it to be a member of the Fe-oxoglutarate-dependent dioxygenase superfamily. These enzymes use an Fe(II) cofactor and 2-oxoglutarate co-substrate to oxidize organic substrates. AlkB hydroxylates an alkylated nucleotide base to produce an unstable product that releases an aldehyde to regenerate the unmodified base. Here we have determined crystal structures of substrate and product complexes of E. coli AlkB at resolutions from 1.8 to 2.3 A. Whereas the Fe-2-oxoglutarate dioxygenase core matches that in other superfamily members, a unique subdomain holds a methylated trinucleotide substrate into the active site through contacts to the polynucleotide backbone. Amide hydrogen exchange studies and crystallographic analyses suggest that this substrate-binding 'lid' is conformationally flexible, which may enable docking of diverse alkylated nucleotide substrates in optimal catalytic geometry. Different crystal structures show open and closed states of a tunnel putatively gating O2 diffusion into the active site. Exposing crystals of the anaerobic Michaelis complex to air yields slow but substantial oxidation of 2-oxoglutarate that is inefficiently coupled to nucleotide oxidation. These observations suggest that protein dynamics modulate redox chemistry and that a hypothesized migration of the reactive oxy-ferryl ligand on the catalytic Fe ion may be impeded when the protein is constrained in the crystal lattice.  相似文献   

18.
Hashimoto H  Horton JR  Zhang X  Bostick M  Jacobsen SE  Cheng X 《Nature》2008,455(7214):826-829
Maintenance methylation of hemimethylated CpG dinucleotides at DNA replication forks is the key to faithful mitotic inheritance of genomic methylation patterns. UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is required for maintenance methylation by interacting with DNA nucleotide methyltransferase 1 (DNMT1), the maintenance methyltransferase, and with hemimethylated CpG, the substrate for DNMT1 (refs 1 and 2). Here we present the crystal structure of the SET and RING-associated (SRA) domain of mouse UHRF1 in complex with DNA containing a hemimethylated CpG site. The DNA is contacted in both the major and minor grooves by two loops that penetrate into the middle of the DNA helix. The 5-methylcytosine has flipped completely out of the DNA helix and is positioned in a binding pocket with planar stacking contacts, Watson-Crick polar hydrogen bonds and van der Waals interactions specific for 5-methylcytosine. Hence, UHRF1 contains a previously unknown DNA-binding module and is the first example of a non-enzymatic, sequence-specific DNA-binding protein domain to use the base flipping mechanism to interact with DNA.  相似文献   

19.
LGR5+ stem cells reside at crypt bottoms, intermingled with Paneth cells that provide Wnt, Notch and epidermal growth factor signals. Here we find that the related RNF43 and ZNRF3 transmembrane E3 ubiquitin ligases are uniquely expressed in LGR5+ stem cells. Simultaneous deletion of the two genes encoding these proteins in the intestinal epithelium of mice induces rapidly growing adenomas containing high numbers of Paneth and LGR5+ stem cells. In vitro, growth of organoids derived from these adenomas is arrested when Wnt secretion is inhibited, indicating a dependence of the adenoma stem cells on Wnt produced by adenoma Paneth cells. In the HEK293T human cancer cell line, expression of RNF43 blocks Wnt responses and targets surface-expressed frizzled receptors to lysosomes. In the RNF43-mutant colorectal cancer cell line HCT116, reconstitution of RNF43 expression removes its response to exogenous Wnt. We conclude that RNF43 and ZNRF3 reduce Wnt signals by selectively ubiquitinating frizzled receptors, thereby targeting these Wnt receptors for degradation.  相似文献   

20.
Ubiquitination-dependent mechanisms regulate synaptic growth and function   总被引:21,自引:0,他引:21  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号