首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
主题模型可以学习用户和推荐项目的潜在主题分布。提出了一种基于双向主题模型的协同过滤算法,分别学习用户和推荐项目的潜在主题分布用于推荐服务。在真实的数据集上实验验证,该算法的性能均优于几个经典的协同过滤算法。  相似文献   

2.
针对潜在狄利克雷分析(LDA)模型分析大规模文档集或语料库中潜藏的主题信息计算时间较长问题,提出基于MapReduce架构的并行LDA主题模型建立方法.利用分布式编程模型研究了LDA主题模型建立方法的并行化实现.通过Hadoop并行计算平台进行实验的结果表明,该方法在处理大规模文本时,能获得接近线性的加速比,对主题模型的建立效果也有提高.   相似文献   

3.
基于OpenMP技术提出并行置信传播算法,在多核服务器上通过共享内存的方式快速推断潜在狄利克雷分布(LDA)主题模型的参数,建立文本中不同主题与文本表面单词之间的联系.利用Enron和Wikipedia数据集,通过3组实验对比了传统吉布斯算法和并行置信传播算法的运行效果.结果表明,并行置信传播算法能够快速推断LDA模型参数,高效处理大规模数据,比传统吉布斯采样算法具有更高的精度.  相似文献   

4.
通过分析自动驾驶技术领域专利的引用信息和文本信息,结合社区发现、LDA(latent Dirichlet allocation)主题建模、主路径分析方法,针对自动驾驶专利数据集的特点建立分析框架进行自动驾驶技术演化分析。应用上述方法可以有效识别自动驾驶技术领域的主题分布,弥补传统单一方法不能反映技术全貌的缺陷。我国需重点突破多源传感器融合感知、复杂环境智能决策控制、车路协同、人机交互等关键技术;在测试和自动泊车技术上处于技术领先;在定位、高精度地图、执行机构、运动控制、硬件计算平台技术上处于技术跟随。  相似文献   

5.
维吾尔语是典型的资源稀缺型语言,由于词义消歧标注语料资源和语义分析工具的不足,导致传统的有监督方法难以实现.针对该问题,将篇章文本的词义消歧问题类比为文本主题分类问题,在LDA(latent Dirichlet allocation)主题模型的基础上提出了一种维吾尔语无监督词义消歧模型.为强化主题模型对歧义词语义项的分类性能,加入了3个数据预处理过程:去除停用词,过滤有效词和强化同义词词频权重.实验结果表明,在随机抽取的63组测试样本集中,该模型的词义消歧准确率达到65.08%,在篇章文本采样词任务中词义消歧准确率达到61.2%.  相似文献   

6.
为对网络舆情数据进行主题挖掘与情感分析,以微博某单位招聘热点事件的舆情演变为研究对象,提出了一种融合主题模型和情感分析的LDA-Attention-BiLSTM模型。运用Python的Scrapy框架爬取该事件文本评论。采用隐含狄利克雷分布(LDA)模型实现了主题识别。使用基于注意力(Attention)机制的双向长短期记忆(BiLSTM)网络进行文本情感分析。研究结果表明,构建的基于LDA与Attention机制BiLSTM的混合模型能够反映舆情中的热点话题与情感时序变化,揭示事件爆发的主要原因,事件传播阶段的主要话题与事件的处理结果等。  相似文献   

7.
针对论坛缺乏热点话题提取方法的现状,提出一种将LDA(潜在狄利克雷分配)模型引入高校论坛场景主题的提取方式.在主题建模过程中,以回帖数量作为帖子热门程度的判定参数,根据帖子热门程度在语料中设置不同权重,随后使用Gibbs采样法提取主题.在此基础上设计并实现了包含数据抓取、文本预处理、主题提取三个模块的完整系统.将LDA模型引入系统并进行提取效果分析,实验结果表明LDA模型可以准确地提取出论坛文本中讨论的实时热点话题.  相似文献   

8.
诗歌作为一种重要的文学体裁体现着古代诗人的人格特征。目前研究主要基于现代语言的数据集进行人格分析,缺少对于古人的相关分析任务,影响数字人文领域研究进程和古代诗人的画像构建。因此,本文开展对于古代诗人进行人格特征分析的研究,并以大五人格理论为标注标准,构建了一个针对古代诗人的大五人格数据集,该数据集包括了581位唐宋两代著名诗人,参考现有的文学评论,对其宜人性、外倾性、神经质、开放性和尽责性进行标注。在此数据集上将语言模型与深度学习模型相融合,基于交叉熵损失函数进行人格特征等级的学习,提出了基于主题增强的大五人格特征预测模型。实验结果表明,准确率达到了0.71,证明所提出的数据集和模型对古代诗人人格特征分析和建模研究有着良好的促进效果。  相似文献   

9.
针对传统模糊聚类算法需要预先确定初始隶属度矩阵的问题,该文提出了基于增量式模糊聚类算法(Incremental fuzzy clustering algorithm, FCLDA)的文本挖掘方法。首先根据文本集中关键词出现次数进行排序,优先选择出现次数多的关键词作为文本集的主题,然后利用隐含狄利克雷分布(Latent Dirichlet allocation, LDA)主题模型构建文档-主题概率分布组成矩阵,将该矩阵作模糊C均值聚类(FCM)算法的隶属度矩阵,并对隶属度矩阵的隶属度值增加一个权值,在FCLDA算法迭代过程中,采用模糊信息熵作为聚类数确定的标准,增加主题词,当模糊信息熵达到最小值时,聚类数确定下来,最后将FCLDA算法应用到网页的文本挖掘中,结果试验表明,相对于FCM算法和K最近邻(K-nearest neighbor)算法,FCLDA算法的运行聚类结果准确率更高,运行速度加快,更适合处理具有模糊性的文本。  相似文献   

10.
针对社会化标签中资源之间存在独立同分布特性,并且其对应的标签资源作为资源内容的特殊语义内容,提出一种联合特征词加权-LDA(Joint Feature Word Weighting-LDA)在资源内容和标签下联合主题识别方法,从而解决资源存在的独立同分布特性以及特征词采样等问题.首先建立评论及对应标签资源在信息熵相似度...  相似文献   

11.
针对基于语料库统计的词语相似度计算方法存在的一些缺陷,如:计算量大、向量的特征维度高、特征稀疏、忽略了词语的语义信息等,提出了一种基于latent Dirichlet allocation(LDA)的词语相似度计算方法,通过将词语的特征向量映射为词语的主题分布来计算词语间的相似度;通过与基于《知网》的词语相似度计算方法的对比,证明了该方法能有效降低特征维度,并具有较好的词语相似度计算效果。  相似文献   

12.
为了发现论坛数据中感兴趣的话题并对话题进行演化跟踪,文中首先利用潜在狄利克雷分配(LDA)模型将文本由词汇空间降维到主题空间,然后采用聚类算法在主题空间对文本集进行聚类,并利用文中提出的热点话题检测方法得出热点话题. 基于发现的热点话题,文中提出了基于在线 LDA(OLDA)话题模型的论坛热点话题演化跟踪模型(HTOLDA),该模型只选择热点话题进行先验传递,并通过设置同一话题相邻时间片的语义距离来判断话题的状态. 实验结果表明,HTOLDA 模型对各个时间片的论坛数据集的建模能力优于 OLDA 模型,并能够有效地对论坛中的热点话题进行演化跟踪.  相似文献   

13.
LDA可以实现大量数据集合中潜在主题的挖掘与文本信息的分类,模型假设,如果文档与某主题相关,那么文档中的所有单词都与该主题相关.然而,在面对实际环境中大规模的数据,这会导致主题范围的扩大,不能对主题单词的潜在语义进行准确定位,限制了模型的鲁棒性和有效性.本文针对LDA的这一弊端提出了新的文档主题分类算法gLDA,该模型通过增加主题类别分布参数确定主题的产生范围,提高分类的准确性.Reuters-21578数据集与复旦大学文本语料库中的数据结果证明,相对于传统的主题分类模型,该模型的分类效果得到了一定程度的提高.  相似文献   

14.
针对传统的潜在狄利克雷分析(LDA)模型在提取评论主题时存在着计算时间长、计算效率低的问题,提出基于MapReduce架构的并行LAD模型建立方法.在文本预处理的基础上,得到文档-主题分布和主题-特征词分布,分别计算主题相似度和特征词权重,结合k-均值聚类算法,实现评论主题提取的并行化.通过Hadoop并行计算平台进行实验,结果表明,该方法在处理大规模文本时能获得接近线性的加速比,对主题模型的建立效果也有提高.  相似文献   

15.
针对LDA(Latent Dirichlet Allocation)主题模型生成的大量topic,很大部分topic内部词语相关度很低,可解释性差,对语言模型后的应用效果带来一定的影响.针对这一问题,该文提出了一种基于主题加权LDA模型的情感分类方法,该模型实现不同主题中内部相关的词语特征加权计算,能够消除不同主题内具有相关度词语的相互影响.实验结果表明,与传统LDA模型分类方法对比,该文提出的基于主题加权LDA模型的情感分类方法平均F1值提高了6.7%~8.1%,验证了该文提出的方法是有效的,提高了分类效果.  相似文献   

16.
一种改进的LDA主题模型   总被引:2,自引:0,他引:2  
由于文档中的词符合幂律分布,使得LDA模型的主题分布向高频词倾斜,导致能够代表主题的多数词被少量的高频词淹没使得主题表达能力降低.通过一种高斯函数对特征词加权,改进LDA主题模型的主题分布.实验显示加权LDA模型获得的主题间的相关性以及复杂度(Perplexity)值都降低,说明改进模型在主题表达和预测性能方面都有所提高.  相似文献   

17.
LDA主题模型是一种有效的文本语义信息提取工具,利用在文档层中实现词项的共现,将词项矩阵转化为主题矩阵,得到主题特征;然而在生成文档过程中会蕴含冗余主题。针对LDA主题模型提取主题特征时存在冗余的不足,提出一种基于邻域粗糙集的LDA主题模型约简算法NRS-LDA。利用邻域粗糙集构造主题决策系统,通过预先设定主题个数,计算出每个主题的重要度;根据重要度进行排序,将排序后重要度低的主题删除。将提出的NRS-LDA算法应用于K-means文本聚类问题上并与传统的文本特征提取算法及改进的算法进行比较,结果表明NRS-LDA方法可以得到更高的聚类精度。  相似文献   

18.
基于语境计算模型的汉语词义消歧   总被引:1,自引:1,他引:1  
提出利用相对词频(Relative Word Frequency,RWF)来评估词语之间搭配强度。基于相对词频,提出语境计算模型,用于对汉语文本词义进行消歧。选择3个常用多义词进行试验,结果验证了该方法的有效性。  相似文献   

19.
随着智能终端的普及,文本的主题挖掘需求也越来越广泛,主题建模是文本主题挖掘的核心,LDA生成模型是基于贝叶斯框架的概率模型,它以语义关联为基础,很好地解决了文本潜在主题的提取问题。对文本聚类过程的核心技术LDA生成模型、数据采样、模型评价等作了较为深入的阐述和解析,结合网络教育平台的2 794篇学习刊物进行了主题发现和聚类实验,建立了包含3 800个词项的词库,通过kmeans算法和合并向量算法(UVM)分两步解决了主题聚类问题。提出了文本挖掘实验的一般方法,并对层次聚类中文本距离的算法提出了改进。实验结果表明,该平台刊物的主题整体相似度比较好,但主题过于集中使得许多刊物的内容不具有辨识度,影响用户对主题的定位。  相似文献   

20.
基于话题信息、词的位置关系和互信息等特征, 提出一种无监督的跨语言词义消歧算法。该算法仅利用在线词典和web搜索引擎, 通过上下文信息选择评论句中多义评论词的词义。实验结果表明, 所提出的词义消歧算法具有较高准确率, 对于具有较多候选词义的评论词仍能表现出较好的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号