共查询到20条相似文献,搜索用时 15 毫秒
1.
《南京大学学报(自然科学版)》2016,(1)
自顶向下的颜色注意力算法(CA)用patch的颜色注意力值当做patch形状特征的权重来进行图像表示,其中,如果当前patch的颜色属于本类内经常出现的颜色,此patch上所提取的形状特征就被赋予一个较大的权值,否则就赋予较小的权值.但是算法没有考虑到对象颜色的多样性.本文提出的方法认为,对象上的patch应该是那些在某类中经常出现并且在其他类别中很少出现的特征.为了提高CA算法的对象识别能力,提出了一种基于互信息的对象颜色选择方法,此方法选择与每类最相关的几种颜色作为对象颜色,通过优化目标函数用于最终确定有类区分的对象颜色个数.并且在对象表示的时候对估计到的对象上的patch赋予一致的高权值.实验采用Soccer,Flower 17和PASCAL VOC Challenge 2007三个图像集进行测评,实验结果表明该算法能够得到比较好的分类结果. 相似文献
2.
针对图像特征提取不充分影响图像检索平均精确率的问题,提出了一种基于联合加权聚合深度卷积特征的图像检索方法。该方法将图像输入到预先训练好的卷积神经网络中,提取最后一个卷积层输出作为图像的深度卷积特征;通过计算空间权重矩阵突出图像的显著性区域并抑制背景噪声区域,然后根据通道方差最大原则选取相应的特征图计算出空间权重矩阵,将原始深度卷积特征加权聚合为列向量;通过区分性地对待不同通道的特征图,计算出通道权重向量与上述列向量点乘得到最终的全局特征向量。公开数据集上的实验结果表明,本文方法能够有效地增强图像特征的表达能力,在图像检索的平均精确率上优于其他同类方法,可以有效地应用到图像检索相关领域。 相似文献
3.
针对图像检索中基于部位的加权聚合(PWA)方法存在的视觉突发问题,提出一种幂归一化的深度卷积特征加权聚合方法。首先简化了原PWA方法中用于确定空间权重的归一化和幂变换操作,直接将所选择的有区分性的通道特征图作为空间权重矩阵,然后引入新的幂变换函数并选取合适的参数对加权聚合后的通道响应进行归一化处理,最后通过PCA降维和白化处理形成图像的全局特征表示形式。在4个标准数据库上的图像检索实验结果表明,该方法能有效调节PWA聚合特征响应的突发度并提高图像检索的准确率。 相似文献
4.
近些年基于内容的图像检索方法在计算机视觉领域取得了突破性的进展,这些成就均归功于深度卷积网络强大的非线性拟合能力。传统的检索方法均使用全连接层的激活值作为图像特征,而该层提取到的向量仅能描述图像整体的轮廓信息,缺乏对局部细节的刻画能力,而卷积层提取到的特征对局部空间纹理有较好的刻画能力。针对该问题,文章提出一种三维特征图的融合算法,每一个特征图都赋予对应的权重,将三维的特征图编码为一维的特征向量用于检索任务。实验分析表明,提出的特征编码方法在INRIA和Oxford数据集上平均查准率均提高了1个百分点,表明从卷积层计算得到的特征向量比全连接层更加适合于检索任务。 相似文献
5.
图像和语音已成为日常生活和科研的常见数据类型,图像的聚类分析是数据挖掘和图像处理领域的重要任务之一.基于自编码器的深度聚类方法具有表征能力有限的缺点,并且特征的生成与聚类指派是分步进行的.为此,提出一种基于新颖卷积自编码器的深度Softmax聚类算法(Asymmetric Convolutional Auto-encoder Based Softmax Clustering,ASCAE-Softmax).首先设计一种非对称的卷积自编码器网络结构(ASCAE),通过优化卷积和添加全连接层,使整个网络呈非对称;接着使用Softmax聚类器把特征映射成聚类概率分布,构造辅助目标概率分布,将特征学习与聚类判别联合在一起.通过迭代最小化KL(Kullback-Leibler)散度损失达到清晰的聚类划分.实验结果表明,该方法能够学习出使同类更加紧凑、异类更加稀疏的特征表示,且聚类结果优于经典的深度聚类算法. 相似文献
6.
研究了一种基于数字图像连续表示的图像分割方法.首先根据机器学习模型的性质,将二维图像的分割问题转换为连续泛函的优化问题;其次利用数字图像的连续表示探讨连续泛函的数学表达式,使其能够表示基于深度学习的图像分割过程;接着通过建立连续泛函的约束条件,将优化问题转化为线性方程组求解的问题;最后利用梯度下降求解方程组,以实现复合... 相似文献
7.
《广西大学学报(自然科学版)》2018,(6)
颜色是识别图像差异的一个重要特性,颜色特征提取过程简单,同时兼具旋转和平移不变性。但传统颜色特征只是对图像的全局信息进行统计,并没有考虑图像的空间分布特性,因此出现部分内容不同,但却有着相似颜色特征的图像。针对传统颜色直方图算法存在的检索缺陷,提出了一种新的颜色直方图分块加权提取算法。首先对图像作分块处理并根据各分块中显著点数的占比情况为其赋予权值,然后分别提取各个分块的颜色直方图特征,从而得到图像分块加权后的颜色特征;同时对图像提取Tamura纹理特征,将颜色和纹理两种特征融合在一起,并根据图像特征向量间的距离大小反映相似程度。实验结果表明:本文算法能够在提取特征向量时有效增加空间分布特性,实现了较好的检索效果。 相似文献
8.
基于SIFT特征提取,本文提出了一种多尺度的图像检索算法,将一幅图像转化为多个特征的集合,再通过计算两幅图像特征向量间的欧氏距离进行比较得出结果进而实现图像检索功能。实验结果说明该算法具有尺度、平移、旋转不变性,可以进行良好应用。 相似文献
9.
为了解决现有的深度恢复方法存在的局限性,提出了一种基于Moreau包络与迭代重加权策略的图像深度恢复方法。提出了一种基于Moreau包络的非凸惩罚函数,提高了模型的先验稀疏性,同时保持了模型的凸性,并对算法的收敛性进行了分析。然后引入了一种迭代重加权算法处理颜色不一致问题。此外,还提出了一种加速算法将深度观测矩阵转换到傅里叶域进行快速处理时的非均匀下采样问题。最后数据集实验结果表明,该方法能够处理各种类型的深度退化,在恢复精度和运行时间方面都取得了良好的效果。 相似文献
10.
采用对深度图像自适应分层滤波方法,提出三维掩模的概念,基于Z-buffer把深度图像分解成若干个不相交的子图像,通过对子图像的滤波与合成,降低算法的复杂度,并使滤波后的误差控制在给定范围内,为计算机渲染算法提供了一种新的后期处理途径,并可应用于景深与运动模糊的模拟. 相似文献
11.
使用计算机进行面部表情识别是当前人脸面部表情识别的热点,在深度学习技术的基础上,应用级联分类器对面部进行整体检测和分区定位后,提出并使用了一种基于自注意力机制的深度卷积神经网络,模型采用Mini-Xception为基本网络融合了注意力机制,再通过训练卷积神经网络构建表情分类模型,最后实现较为快速准确的表情识别。文中采用几种方法进行实验对比,并对最终的实验结果加以分析。结果表明,在相同的参数设置下提出的方法能明显提高分类性能、识别的精准度以及面部表情变化检测的实时速度。 相似文献
12.
《华东理工大学学报(自然科学版)》2015,(5)
手势识别是模式识别领域的一个热点研究方向。提出了一种利用Kinect传感器深度图像进行手势分割的方法,并研究了基于灰度图像HOG特征的手势识别模型;深入研究了HOG特征,分析其特征向量特点,探讨了不同特征维数对训练机的影响及处理效率;通过SVM机器学习方法实现手势的分类识别,经过对大量实验样本的优化训练,获得了最优SVM参数,并进行分析、对比识别率。本文方法维数少、识别率高、运行速度快、性能稳定,能满足实时性手势识别的要求。 相似文献
13.
【目的】针对粉尘环境中单幅图像深度预测精度低的问题,提出了一种基于输入特征稀疏化的粉尘图像深度预测网络。【方法】使用粉尘图像的直接传输率与深度的关系设计预估计深度网络,利用图像颜色衰减先验原理进一步获取粉尘图像的稀疏深度特征。将该稀疏深度特征与粉尘图像一起作为深度预测网络的输入。深度预测网络以“编码器-解码器”为模型框架,编码器中使用残差网络(ResNet)对粉尘图像进行编码,设计融合通道注意力机制的稀疏卷积网络对稀疏深度特征进行编码。解码器中采用反卷积以及多尺度上采样的方法,以更好的重建稠密的深度信息。使用最小绝对值损失和结构相似性损失作为边缘保持损失函数。【结论】在NYU-Depth-v2数据集上的实验结果表明该方法能够从粉尘图像中有效预测深度信息,平均相对误差降低到0.054,均方根误差降低到0.610,在δ<1.25时准确率达到0.967. 相似文献
14.
《福建师范大学学报(自然科学版)》2016,(5)
为了检索图像中不同位置和不同大小的感兴趣目标,提出一种基于多尺度深度卷积特征的图像检索方法.首先利用卷积神经网络构造一个深度学习框架,利用随机梯度下降和后向传播算法训练深度学习模型;其次利用训练得到的模型提取图像在不同尺度下的卷积特征,对不同尺度下的卷积特征进行PCA降维,研究降维后的检索性能;最后为了提高深度特征对图像的刻画能力,对不同尺度下降维后的卷积特征进行特征融合.大量的实验表明本文所提算法对图像检索是有效的. 相似文献
15.
基于深度图像和表观特征的手势识别 总被引:1,自引:0,他引:1
针对复杂环境下的手势快速识别问题,提出一种基于深度图像信息和表观特征的手势识别方法.首先利用深度图像信息从复杂环境中快速提取手势区域;然后综合手势的表观特征,建立分类决策树实现手势的识别.针对常见的8种手势在复杂背景条件下进行测试,在机器人平台下手势的平均识别率高达98.2%,速度达到25帧/s. 相似文献
16.
提出了一种基于马尔科夫随机场(MRF)模型与多尺度纹理特征的单幅图像深度信息估计方法,该方法采用了Laws滤波器分别对图像的边缘、梯度、点进行滤波,捕捉二维场景图像中不同尺度的纹理能量以获得深度信息的特征.并根据纹理特征在不同尺度范围的不同值,计算出纹理线索与场景深度间的概率关系,在此基础上,构建MRF概率模型.MRF模型通过分析邻域系统和设计迭代准则很好地描述了纹理特征与场景深度之间的关系,最后通过迭代算法获得二维场景图像的深度信息.实验结果表明,该方法对场景深度信息的提取具有较好的效果,对于二维场景图像的场景结构、空间布局的约束较少,算法鲁棒性好. 相似文献
17.
《天津师范大学学报(自然科学版)》2020,(2)
提出一种基于属性和距离加权的K近邻特征选择方法.该方法在计算样本类别时既考虑每个特征的重要程度,又考虑近邻样本的距离,使用遗传算法搜索最优特征权重向量.将该方法与已有的3种特征选择方法MIFS、DISR和CIFE在6个公开的数据集上进行比较,实验结果表明该方法是有效的,且可以提高分类性能. 相似文献
18.
为进一步利用高光谱图像在同一区域内像素点的相似特性完成地物分类,提出了一种基于核方法协同表示与绝对距离融合的分类算法。通过核函数将原始数据投影到高维核空间,在特征空间中用全部训练样本表示待测样本,再计算吉洪诺夫正则化下待测像元的重构残差和每个类别表示系数绝对值向量,使用不同权重予以融合作为分类依据。在实验中使用Indian Pines和Pavia University两种高光谱图像数据对该方法进行实验验证,实验结果表明:与原协同表示(CRC)及支持向量机(SVM)相比,改进后分类算法总体分类精度和平均分类精度都有更好的表现,均达到94%以上,具有较好的鲁棒性。 相似文献
19.
高穿透性、高抗干扰能力、可全天时全天候等优点使得毫米波成像在反恐安检、环境监测、气象预报等领域获得了广泛的应用,但分辨率和目标特征提取技术一直是毫米波成像发展的主要瓶颈。传统方法对毫米波图像进行去噪和特征提取时往往会造成失真,难以保持目标边缘信息以进行特性提取。稀疏理论利用固定的基函数表示毫米波图像的结构特征,在去除噪声的同时有效地保持了目标边缘信息。基于毫米波图像全局梯度特征,论文提出了一种基于全局梯度特征的毫米波图像稀疏表示与特征提取方法,实验数据的仿真成像结果验证了所提方法的有效性和实用性。 相似文献
20.
《西安科技大学学报》2017,(5)
图像前景背景分割是图像处理中的关键技术,文中提出了基于超像素分类的二值分割算法。对于输入图像,首先采用超像素分割算法,将图像分割成多个保留边缘的封闭区域,即超像素;对每一块超像素,考虑颜色和纹理,构造一种对光照和颜色较为鲁棒的特征,来消除同种物体在光照和颜色差异下的影响;用所得特征训练分类器,判断每块超像素属于前景或背景;最后将超像素分类结果作为初值用图分割的方法进行修正,得到最终的二值分割结果。实验结果显示算法能较好的完成前景背景分割的任务。此外,本算法易于和现有的分类算法相结合,具有较强的可移植性。 相似文献