共查询到18条相似文献,搜索用时 62 毫秒
1.
传统粒子群算法运行机理是通过粒子群全局最优和自身经验最优来搜索最优位置,不断迭代进化,以此趋近最优解,但该算法共享信息的局限性使其容易陷入局部最优.针对传统粒子群算法的不足,提出了共享历史最优搜索信息的粒子群算法.该粒子群体在搜索过程中,共享算法本次运行的种群个体历史最优信息、当前全局最优信息,及前几次运行过程中的种群个体历史最佳信息.通过5个经典函数的仿真实验测试,验证了该算法具有较强的全局搜索能力和收敛性. 相似文献
2.
高功率放大器是无线通信系统中非线性失真的主要来源之一. 数字基带预失真技术能有效地降低系统非线性失真,提高系统传输性能. 采用Hammerstein模型作为预失真器的模型结构,通过粒子群优化算法(particle swarm algorithm, PSO)估计预失真器系数,解决了梯度算法无法直接估计Hammerstein模型系数和易陷入局部极值等问题. 通过对PSO算法进行并行优化设计,使算法最大加速度比达3以上,加快了算法处理速度. 仿真结果表明新算法能够有效抑制系统带外频谱再生现象,减小相邻信道功率比(ACPR)达25 dB. 相似文献
3.
经典粒子群算法由于多样性差而陷入局部最优,从而造成早熟停滞现象.为克服上述缺点,本文结合人工免疫算法,提出一种基于自适应搜索的免疫粒子群算法.首先,该算法改善了浓度机制;然后由粒子最大浓度值来控制子种群数目以充分利用粒子种群资源;最后对劣质子种群进行疫苗接种,利用粒子最大浓度值调节接种疫苗的搜索范围,不仅避免了种群退化现象,而且提高了算法的收敛精度和全局搜索能力.仿真结果表明该算法求解复杂函数优化问题的有效性和优越性. 相似文献
4.
设计了一种基于并行粒子群和RL(reinforcement learning,RL)的无人机航路规划方法.首先,定义了引入转角角度约束的航路规划的代价模型,然后,提出了一种基于RL中的Q-Learning算法的初始航路规划方法,将其作为粒子的初始位置,将粒子群划分为多个种群进行并行寻优,得到所有种群局部最优解,计算其最优值获取全局最优解;最后设计了基于并行粒子群和RL的无人机航路规划算法.仿真实验表明文中方法能实现复杂威胁情况下UCAC航路规划,具有较高的规划效率,且与其他方法相比,具有收敛速度快和全局寻优能力强的优点,具有较强的可行性和实用性. 相似文献
5.
建立了以最小制造成本为目标,以装配功能要求和工序加工能力为约束的并行公差优化设计模型.将粒子群工具箱作为并行公差优化设计模型的求解工具,并给出具体的流程.最后,通过一个实例的求解验证利用基于粒子群工具箱的粒子群算法求解并行公差优化模型的可行性.通过与已有结果的比较,说明了该方法在求解非凸规划问题时的优越性. 相似文献
6.
基于搜索空间划分和Sharing函数的粒子群优化算法 总被引:1,自引:0,他引:1
传统粒子群优化算法PSO(Particle Swarm Optimization)概念简单,适应性强,但存在早熟等问题.本文提出了新的基于搜索空间划分(Search Space Division)和Sharing函数的智能分布粒子群优化算法(SDSIR-PSO).创新点包括:(1)保优的重布粒子算法;(2)引入Sharing函数阻止重分布的粒子陷入同一局部最优;(3)划分搜索空间,子空间中寻优,再优中选优,作全局最优.通过对典型测试函数的详细测试验证了新算法的有效性,在相同条件下较传统算法的解精度提高了8 相似文献
7.
针对标准粒子群算法在处理复杂函数时存在的收敛速度慢、易陷入局部最优的缺点,提出了新的混合粒子群算法.该算法利用混沌运动的遍历性、对初始条件的敏感性等特性进行群体的混沌初始化,且捕食搜索策略可以通过调节限制级别的控制粒子群的搜索空间,从而平衡全局搜索和局部搜索.测试结果表明,新算法具有更快的收敛速度和更强的全局寻优能力. 相似文献
8.
9.
针对BP神经网络初始化敏感性高、易陷入局部最小值的问题,研究基于粒子群优化和布谷鸟搜索融合的BP神经网络优化方法,提出一种分层的融合优化模型MB-PSO-CS-BP。该方法在下层使用Mini-Batch算法将粒子群分割为小种群,利用粒子群优化算法进行局部搜索;在此基础上采用布谷鸟搜索算法进行全局搜索,从而减小BP神经网络初始化的敏感性,减缓其陷入局部最优的症状。在实际应用领域的数据集上对所提出算法进行实验验证。相较于一般的PSO-BP模型与CS-BP模型,所提出的MB-PSO-CS-BP融合模型在全局最优值、均方误差等多个评估指标上有所改进,进一步提升了利用BP神经网络进行预测的准确性与稳定性。 相似文献
10.
针对带有收缩因子的粒子群优化算法(CFPSO)容易陷入局部极值、进化后期的收敛速度慢和精度低等缺点,采用简化粒子群优化(sCFPSO)方程与混沌搜索技术相结合的方法,提出了基于混沌搜索的简化粒子群优化(CsCFPSO)算法.该算法利用分段线性混沌映射(PWLCM)的遍历性和类随机性来完成混沌搜索,从而加快sCFPSO算法跳出局部极值点而继续优化.经过6个经典测试函数对该算法进行实验,结果表明其对于粒子群优化具有很好的使用价值,它可以准确地消去局部极值,确保收敛速度和精度,该算法是通过缩小种群数和进化代数来实现的. 相似文献
11.
针对粒子群优化算法随维数增大群体多样性相对减小而早熟收敛的问题,在对和谐搜索算法进行适应性改进的基础上,将其引入粒子群算法中,提出一种动态和谐搜索混合粒子群优化算法(DHSPSO).该方法使得粒子在搜索初期更具遍历性,降低算法对初始值的敏感性,并通过和谐搜索算法搜索的随机性和优胜劣汰机制改善粒子群的多样性,使得算法具有更快的收敛速度与更好的全局搜索能力.以多个标准测试函数优化进行仿真测试,结果表明,DHSPSO算法在进行高维优化问题时,在寻优速度、精度和成功率等方面均显示出良好的优化效果. 相似文献
12.
大规模的数据挖掘如聚类问题迫切需要大量计算,提出了自适应微粒群优化的并行聚类算法。通过从多种群并行地开始搜索,基于群体搜索技术的微粒群优化算法减少了初始条件的影响,采用任务并行和部分异步通信策略,降低计算时间。结合并行微粒群算法的自适应参数动态优化特性,克服群体逐渐失去迁移性而停止进化的问题,保持群体多样性从而了避免种群退化。仿真实验证明,该算法在并行机群上运行时,加快了聚类算法的计算速度,提高了聚类质量。 相似文献
13.
针对粒子群算法搜索后期易陷入局部极值的缺点,提出一种基于核矩阵协同进化的震荡搜索粒子群优化(kenel matrix synergistic evolution shock search particle swarm optimization,KMSESPSO)算法,该算法对粒子进行局部与全局结合的震荡搜索,且当整个粒子种群陷入停滞状态时,利用核矩阵对特定粒子组进行协同进化以扩大种群的多样性.实验结果表明,KMSESPSO算法有效提高了粒子的全局搜索能力,既避免粒子种群易早熟收敛,又较好地提高寻优精度、加快收敛速度,且有一定的鲁棒性. 相似文献
14.
针对粒子滤波的粒子退化和贫化问题,将新兴的简化群优化(SSO)算法引入到粒子滤波的重采样阶段.SSO算法结构简单,在保留优良粒子的基础上,增加一项粒子随机运动过程,以提供粒子多样性.实验结果表明,新算法不仅有效提高了对非线性系统状态的估计精度,而且具有更高的运算速度. 相似文献
15.
车辆路径问题的并行粒子群算法研究 总被引:2,自引:4,他引:2
设计了一种引入了模拟退火机制的并行粒子群算法.该算法结合了基本粒子群优化算法的快速寻优能力和模拟退火算法的概率突跳性,避免了基本粒子群优化算法易于陷入局部最优的缺点,提高了进化后期算法的收敛精度.将该算法用于解决车辆路径问题,实验结果表明该算法具有较好的性能. 相似文献
16.
提出一种搜索空间自适应的自适应粒子群优化算法.该算法对不同等级的粒子适应值采取不同的惯性权重,并随着算法的迭代不断缩小粒子群的搜索空间.同时,选择当前代的较优部分粒子直接进入下一代,其他粒子通过在缩小的搜索空间内随机生成,加快了种群收敛速度,同时又能使种群不断跳出局部最优解.几种典型函数的仿真实验表明,该算法在收敛速度... 相似文献
17.
针对现有特征选择方法中存在的收敛速度慢和计算效率低等问题,提出了一种基于樽海鞘群与粒子群优化的混合优化(hybrid optimization of salp swarm algorithm and particle swarm optimization,HOSSPSO)特征选择方法,该方法在樽海鞘群算法(salp swarm algorithm,SSA)的基础上,引入粒子群优化(particle swarm optimization,PSO),提高了SSA的收敛速度,改进了探索和开发步骤的效率,增加了解空间更多的灵活性和多样性,使得方法能够迅速获得全局最优值.为了验证算法的性能,在2个实验序列上进行了测试:第一个实验序列使用基准函数,将HOSSPSO与标准SSA、PSO进行了比较;第二个实验序列采用不同的UCI数据集,通过提出的算法确定最佳特征集.实验结果表明,相比于其他优化算法,HOSSPSO的性能更具优势,在多项评估指标中获得较好的效果,能以极少量的特征获得最大的分类精度. 相似文献
18.
基于粒子群优化和SOM网络的聚类算法研究 总被引:2,自引:0,他引:2
利用改进的粒子群优化算法(PSO)的优化性能,结合SOM网络模型,提出了一种基于粒子群优化算法和SOM网络的聚类算法(PSO/SOM),使用PSO对SOM网络进行训练来代替SOM的启发式训练方法.将PSO/SOM算法用于对Wine和Iris等数据集进行模式聚类识别,可以得到较优的聚类识别效果.相比标准SOM算法能有效提高网络映射的准确程度,降低网络的量化误差和拓扑误差,同时也降低了错聚率,实验结果验证了本算法的有效性. 相似文献