首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
混沌时间序列的混合遗传神经网络预测方法   总被引:3,自引:0,他引:3  
李目  何怡刚  周少武  谭文 《系统仿真学报》2008,20(21):5825-5828
在相空间重构理论的基础上,将改进的遗传算法和神经网络结合起来,提出了一种混合遗传神经网络预测混沌时问序列的方法.通过复相关法和Cao方法重构混沌时间序列,利用改进的遗传算法优化神经网络的结构、初始权值和阚值,然后训练神经网络求得最优解.该算法应用到混沌时间序列的预测中,验证了该算法的有效性,并与BP和RBF算法的预测精度进行了比较,仿真结果表明该算法对混沌时间序列具有更好的非线性拟合能力和更高的预测精度.  相似文献   

2.
针对常用的入库径流混沌预测模型只能做短期预测,且需要大量样本数据的问题,将支持向量机理论与混沌预测理论相耦合,建立基于支持向量机的入库径流混沌时间序列预测模型,该模型利用混沌理论中的相空间重构技术将原始入库径流序列映射到一个高维相空间,以相空间中的相,占为基础构造训练样本和测试样本,然后利用支持向量机理论进行预测。经实例计算,模型比基于最大Lyapunov指数的混沌预测模型、人工神经网络模型和自回归模型拟合效果好,预测精度高,丰富和发展了入库径流预测理论和方法。  相似文献   

3.
混沌时间序列建模及预测   总被引:13,自引:1,他引:13  
讨论了混沌时间序列的建模及预测方法 ,给出了各重要参数的选取算法 ,并应用于实例 ,与传统的时间序列预测方法相比较 ,取得了精度更高的预测结果 ,从而为一类非线性时间序列提供了从数据采集识别到建模预测的完整技术.  相似文献   

4.
基于支持向量机的混沌时间序列非线性预测   总被引:25,自引:1,他引:25  
提出一种新的应用支持向量机回归原理的混沌时间序列非线性预测方法,同时利用自适应的方法对支持向量机的参数进行优化.仿真结果显示支持向量机具有比传统的回归方法更好的泛化能力,预测方法具有很高的预测精度,同时还讨论了支持向量机中参数以及嵌入维数的变化对泛化误差的影响,得出的结论与统计学习理论中的VC维理论相一致.  相似文献   

5.
滑动窗口二次自回归模型预测混沌时间序列   总被引:5,自引:0,他引:5  
提出一种新颖的非线性时间序列预测模型,即滑动窗口二次自回归(MWDAR)模型.MWDAR模型使用部分的历史数据及其二次项构造自回归模型.模型参数用线性最小二乘法估计.应用模型进行预测时,预先选定窗口大小以及模型一次项和二次项的阶次.在每个当前时刻,先根据窗口内的数据估计模型参数,然后根据输入向量及模型参数做出预测.这种预测方法不仅适合小数据集的时间序列预测,而且对大数据集具有极高的计算效率.分别用Henon混沌时间序列数据和真实的股票交易数据作了MWDAR方法与局域线性化方法的1步和多步预测对比实验.结果显示MWDAR方法无论在预测精度上,还是在计算效率上都优于局域线性化方法.  相似文献   

6.
基于RBF网络的混沌时间序列的建模与多步预测   总被引:10,自引:1,他引:10  
提出将RBF神经网络应用于混沌时间序列的建模与预测中 ,设计了一个三层RBF网络结构 ,说明了RBF网络用于混沌时间序列建模和预测时的基本性质。仿真结果表明 ,RBF网络模型对混沌时间序列有比较强的拟合能力和比较高的一步及多步预测精度。采用RBF网络进行混沌时间序列的建模和预测能够取得比其它方法好得多的效果。  相似文献   

7.
为解决时间序列的一步预测问题,提出了一种基于混沌算子的预测网络.混沌算子具有复杂的动力学行为,根据各算子所处的不同状态,利用加权方法计算出时间序列下一时刻的预测值.根据预测值与实际值的误差,利用混沌优化方法动态地调节混沌算子的参数,逐渐提高网络的预测精度.利用该方法分别对混沌以及实际股票价格等复杂时间序列进行了仿真预测.仿真结果表明,该方法可以对具有内在确定性的系统进行有效的预测.  相似文献   

8.
混沌时间序列局域预测方法   总被引:16,自引:1,他引:16  
在深入研究混沌时间序列局域预测方法的基础上,提出了一种加权局域基函数预测方法。该方法综合考虑了广义自由度和邻近点权重,提出了加权动态确定最邻近点数的判定条件,并利用基函数拟合确定出的最邻近点进行预测。算例分析表明,加权局域基函数法具有较高的预测精度,是比较理想的用于混沌时间序列的预测方法。  相似文献   

9.
基于带回归权重RBF-AR模型的混沌时间序列预测   总被引:1,自引:1,他引:0  
提出了用带回归权重的径向基函数(radial basis function, RBF)网络来逼近状态相依自回归(autogressive, AR)模型中的函数系数,得到了带回归权重的RBF-AR模型。在这种模型中,RBF神经网络的输出权重已不是单一的常量,而是输入变量的线性回归函数。一种快速收敛的结构化非线性参数优化方法被用来估计提出的模型,辨识出的模型用来预测两组著名的混沌时间序列:Mackey-Glass时间序列和Lorenz吸引子时间序列。实验结果表明,提出的模型在预测精度上要优于其他一些现存的模型。  相似文献   

10.
基于混沌吸引子的时间序列预测   总被引:15,自引:2,他引:15  
本文提出一种新的时间序列预测技术。对于一个经诊断存在混沌吸引子的时间序列,根据相空间中混沌吸引子的分形等特性,建立依赖于预测点邻界状态的预测模型;综合存在于原时间序列中确定线性趋势的外推结果,实现对原时间序列的短期预测。  相似文献   

11.
张立权  邵诚 《系统仿真学报》2006,18(6):1593-1596,1600
基于数据挖掘思想,使用置信度度量和改进的梯度下降法,提出一种新的构造完备.模糊规则集的方法来建模和预测混沌时间序列。所提方法通过确定最优输出模糊子集的质心和模糊规则的置信度度量,能够推理数据未覆盖区域的空缺规则,并构造一个完备的模糊规则集,进而解决了混沌时间序列的可预测问题。仿真结果表明新方法是有效和准确的。它能很好地辨识系统的特征,并且提供了一种混沌时间序列预测的新方法。  相似文献   

12.
In this paper, a method of direct multi-step prediction of chaotic time series is proposed, which is based on Kolmogorov entropy and radial basis functions neural networks. This is done first by reconstructing a phase space using chaotic time series, then using K-entropy as a quantitative parameter to obtain the maximum predictability time of chaotic time series, finally the predicted chaotic time series data can be acquired by using RBFNN. The application considered is Lorenz system. Simulation results for direct multi-step prediction method are compared with recurrence multi-step prediction method. The results indicate that the direct multi-step prediction is more accurate and rapid than the recurrence multi-step prediction within the maximum predictability time of chaotic time series. So, it is convenient to forecast and control with real time using the method of direct multi-step prediction.  相似文献   

13.
提出了一种基于随机模糊神经网络对噪声混沌时间序列进行建模与预测的方法,并介绍了一种基于非单值逻辑随机模糊神经网络(SFNN)的结构和学习算法.在此基础上,应用该网络对含随机噪声的麦克-格拉斯混沌时间序列进行了仿真,仿真结果表明,在噪声较大的情况下,SFNN比FNN方法有更好的预测效果.  相似文献   

14.
基于EOF-SVD模型的多元时间序列相关性研究及预测   总被引:1,自引:1,他引:1  
HAN Min  李德才 《系统仿真学报》2008,20(7):1669-1673
将奇异值分解同自然正交分解相结合,提出一种改进的正交奇异值分解方法.通过对原始数据进行自然正交分解,削弱原始数据之间的相关性,增强其用于分析及预测的能力,并得到相互正交的主成分代替原始数据进行奇异值分解,分析两个变量场之间的相关关系.在此基础上建立神经网络预测模型,实现多元时间序列的预测.采用该方法对三门峡处径流量同太平洋海温的耦合关系进行分析,并同常规奇异值分解方法进行比较,仿真结果验证了所提方法的有效性.  相似文献   

15.
基于Lyapunov指数的混沌时间序列识别   总被引:5,自引:0,他引:5  
混沌特性的识别是对非线性时间序列进行分析、预测、控制的基础。本文克服了已有文献用Lya-punov指数识别混沌时计算Lyapunov指数的不足,由关联积分构造统计量来计算相空间重构的参数,然后利用混沌的遍历性及定义,提出了计算最大Lyapunov指数的新方法。  相似文献   

16.
SVR在混沌时间序列预测中的应用   总被引:16,自引:1,他引:16  
支持向量机是一种基于统计学习理论的新颖的机器学习方法,该方法已广泛用于解决分类和回归问题。将支持向量回归算法应用于混沌时间序列预测中,并同BP网络及RBF网络的预测结果进行了比较分析。仿真实验表明,支持向量回归方法具有很好的泛化能力和一定的噪声容忍能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号