首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Modulation of the motion aftereffect by selective attention   总被引:4,自引:0,他引:4  
A Chaudhuri 《Nature》1990,344(6261):60-62
The motion aftereffect is a much studied and well documented phenomenon. After viewing a moving visual pattern for a period of time, the same pattern appears to drift in the opposite direction when it is stopped. Psychophysical experiments involving interocular transfer, dichoptic stimulation, and motion aftereffects contingent upon other visual parameters such as colour, orientation and texture, imply that the motion aftereffect is generated at the level of the visual cortex. It has been hypothesized that cortical neurons specialized for the detection of motion along a particular direction become 'fatigued' during the adaptation period so that the resting equilibrium subsequently shifts in the opposite direction to that of the adapting stimulus, giving rise to the sensation of the aftereffect. I have found that if observers are engaged in a separate discrimination task superimposed on a moving textured background, the subsequent motion aftereffect to the background is considerably reduced. It seems that motion aftereffects are susceptible to attentional mechanisms.  相似文献   

2.
提出一种能在动态摄像机场景下检测前景物的算法(AGMM).本方法采用角点特征对前后两帧图像进行匹配,估算两帧图像的移动向量,并以此校正高斯混合模型(GMM),并在此基础上进行背景的重建以及前景物的分割.以不同场景的视频序列对本算法和GMM算法进行比较.实验结果表明,提出的算法能够适应动态摄像机场景,以牺牲一点复杂度为代价,大大提高检测精度,并且在摄像机移动比较大的位移时仍然可以得到正确的结果.  相似文献   

3.
Through the development of a high-acuity fovea, primates with frontal eyes have acquired the ability to use binocular eye movements to track small objects moving in space. The smooth-pursuit system moves both eyes in the same direction to track movement in the frontal plane (frontal pursuit), whereas the vergence system moves left and right eyes in opposite directions to track targets moving towards or away from the observer (vergence tracking). In the cerebral cortex and brainstem, signals related to vergence eye movements--and the retinal disparity and blur signals that elicit them--are coded independently of signals related to frontal pursuit. Here we show that these types of signal are represented in a completely different way in the smooth-pursuit region of the frontal eye fields. Neurons of the frontal eye field modulate strongly during both frontal pursuit and vergence tracking, which results in three-dimensional cartesian representations of eye movements. We propose that the brain creates this distinctly different intermediate representation to allow these neurons to function as part of a system that enables primates to track and manipulate objects moving in three-dimensional space.  相似文献   

4.
van Ee R  Anderson BL 《Nature》2001,410(6829):690-694
The spatial differences between the images seen by the two eyes, called binocular disparities, can be used to recover the volumetric (three-dimensional) aspects of a scene. The computation of disparity depends upon the correct identification of corresponding features in the two images. Understanding what image features are used by the brain to solve this matching problem is one of the main issues in stereoscopic vision. Many cortical neurons in visual areas V1 (ref. 2), MT (refs 3, 4) and MST (refs 5, 6) that are tuned to binocular disparity are also tuned to orientation, motion direction and speed. Although psychophysical work has shown that motion direction can facilitate binocular matching, the psychophysical literature on the role of orientation is mixed, and it has been argued that speed differences are ineffective in aiding correspondence. Here we use a different psychophysical paradigm to show that the visual system uses similarities in orientation, motion direction and speed to achieve binocular correspondence. These results indicate that cells that multiplex orientation, motion direction, speed and binocular disparity may help to solve the binocular matching problem.  相似文献   

5.
Angelaki DE  Shaikh AG  Green AM  Dickman JD 《Nature》2004,430(6999):560-564
A critical step in self-motion perception and spatial awareness is the integration of motion cues from multiple sensory organs that individually do not provide an accurate representation of the physical world. One of the best-studied sensory ambiguities is found in visual processing, and arises because of the inherent uncertainty in detecting the motion direction of an untextured contour moving within a small aperture. A similar sensory ambiguity arises in identifying the actual motion associated with linear accelerations sensed by the otolith organs in the inner ear. These internal linear accelerometers respond identically during translational motion (for example, running forward) and gravitational accelerations experienced as we reorient the head relative to gravity (that is, head tilt). Using new stimulus combinations, we identify here cerebellar and brainstem motion-sensitive neurons that compute a solution to the inertial motion detection problem. We show that the firing rates of these populations of neurons reflect the computations necessary to construct an internal model representation of the physical equations of motion.  相似文献   

6.
A velocity dipole in the distribution of radio galaxies   总被引:1,自引:0,他引:1  
Blake C  Wall J 《Nature》2002,416(6877):150-152
The motion of our Galaxy through the Universe is reflected in a systematic shift in the temperature of the cosmic microwave background-because of the Doppler effect, the temperature of the background is about 0.1 per cent higher in the direction of motion, with a correspondingly lower temperature in the opposite direction. This effect is known as dipole anisotropy. If our standard cosmological model is correct, a related dipole effect should also be present as an enhancement in the surface density of distant galaxies in the direction of motion. The main obstacle to finding this signal is the uneven distribution of galaxies in the local supercluster, which drowns out the small cosmological signal. Here we report a detection of the expected cosmological dipole anisotropy in the distribution of galaxies. We use a survey of radio galaxies that are mainly located at cosmological distances, so the contamination from nearby clusters is small. When local radio galaxies are removed from the sample, the resulting dipole is in the same direction as the temperature anisotropy of the microwave background, and close to the expected amplitude. The result therefore confirms the standard cosmological interpretation of the microwave background.  相似文献   

7.
W S Geisler 《Nature》1999,400(6739):65-69
Although many neurons in the primary visual cortex (V1) of primates are direction selective, they provide ambiguous information about the direction of motion of a stimulus. There is evidence that one of the ways in which the visual system resolves this ambiguity is by computing, from the responses of V1 neurons, velocity components in two or more spatial orientations and then combining these velocity components. Here I consider another potential neural mechanism for determining motion direction. When a localized image feature moves fast enough, it should become smeared in space owing to temporal integration in the visual system, creating a spatial signal-a 'motion streak'-oriented in the direction of the motion. The orientation masking and adaptation experiments reported here show that these spatial signals for motion direction exist in the human visual system for feature speeds above about 1 feature width per 100 ms. Computer simulations show that this psychophysical finding is consistent with the known response properties of V1 neurons, and that these spatial signals, when appropriately processed, are sufficient to determine motion direction in natural images.  相似文献   

8.
针对传统的目标检测算法往往是顺着时间轴方向从过去到现在分析视频序列,而忽略当前帧之后的逆向视频帧信息,对于复杂场景下的背景突变或光照变化的运动目标检测等方面存在不足.提出了基于双向分析的(KGMM)运动目标检测方法.在KGMM模型基础上,加入向后分析建立混合高斯模型,有效解决了较强的背景扰动和环境的复杂变化带来检测效果不好的问题,提高了算法的适应性.向前分析模型与向后分析模型共享一个高斯分布集,减少了高斯分布个数,保证了算法的运行速度.实验结果表明,改进的算法检测效果更理想.  相似文献   

9.
在源的质心固定的视超光速模型的基础上,本文进一步推导出质心运动情况下的视超光速运动的视速度方程。然后,在喷流方向与源的退行方向相反的情况下,推导出核与子源速率相等条件下及核固定条件下求子源真实速度的方程。对子源的真实速度,本文最后给以简单地讨论。  相似文献   

10.
Nishida S  Johnston A 《Nature》1999,397(6720):610-612
After adaptation of the visual system to motion of a pattern in a particular direction, a static pattern appears to move in the opposite direction-the motion aftereffect (MAE). It is thought that the MAE is not accompanied by a shift in perceived spatial position of the pattern being viewed, providing psychophysical evidence for a dissociation of the neural processing of motion and position that complements anatomical and physiological evidence of functional specialization in primate and human visual cortex. However, here we measure the perceived orientation of a static windmill pattern after adaptation to rotary motion and find a gradual shift in orientation in the direction of the illusory rotation, though at a rate much lower than the apparent rotation speed. The orientation shift, which started to decline within a few seconds, could persist longer than the MAE, and disappeared when the MAE was nulled by physical motion of the windmill pattern. Our results indicate that the representation of the position of spatial pattern is dynamically updated by neurons involved in the analysis of motion.  相似文献   

11.
Cumming BG 《Nature》2002,418(6898):633-636
The horizontal separation of the eyes means that objects nearer or farther than the fixation point project to different locations on the two retinae, differing principally in their horizontal coordinates (horizontal binocular disparity). Disparity-selective neurons have generally been studied with disparities applied in only one direction (often horizontal), which cannot determine whether the encoding is specialized for processing disparities along the horizontal axis. It is therefore unclear if disparity selectivity represents a specialization for naturally occurring disparities. I used random dot stereograms to study disparity-selective neurons from the primary visual cortex (V1) of awake fixating monkeys. Many combinations of vertical and horizontal disparity were used, characterizing the surface of responses as a function of two-dimensional disparity. Here I report that the response surface usually showed elongation along the horizontal disparity axis, despite the isotropic stimulus. Thus these neurons modulated their firing rate over a wider range of horizontal disparity than vertical disparity. This demonstrates that disparity-selective cells are specialized for processing horizontal disparity, and that existing models of disparity selectivity require substantial revision.  相似文献   

12.
Hearing visual motion in depth   总被引:9,自引:0,他引:9  
Kitagawa N  Ichihara S 《Nature》2002,416(6877):172-174
Auditory spatial perception is strongly affected by visual cues. For example, if auditory and visual stimuli are presented synchronously but from different positions, the auditory event is mislocated towards the locus of the visual stimulus-the ventriloquism effect. This 'visual capture' also occurs in motion perception in which a static auditory stimulus appears to move with the visual moving object. We investigated how the human perceptual system coordinates complementary inputs from auditory and visual senses. Here we show that an auditory aftereffect occurs from adaptation to visual motion in depth. After a few minutes of viewing a square moving in depth, a steady sound was perceived as changing loudness in the opposite direction. Adaptation to a combination of auditory and visual stimuli changing in a compatible direction increased the aftereffect and the effect of visual adaptation almost disappeared when the directions were opposite. On the other hand, listening to a sound changing in intensity did not affect the visual changing-size aftereffect. The results provide psychophysical evidence that, for processing of motion in depth, the auditory system responds to both auditory changing intensity and visual motion in depth.  相似文献   

13.
Experience-dependent representation of visual categories in parietal cortex   总被引:1,自引:0,他引:1  
Freedman DJ  Assad JA 《Nature》2006,443(7107):85-88
Categorization is a process by which the brain assigns meaning to sensory stimuli. Through experience, we learn to group stimuli into categories, such as 'chair', 'table' and 'vehicle', which are critical for rapidly and appropriately selecting behavioural responses. Although much is known about the neural representation of simple visual stimulus features (for example, orientation, direction and colour), relatively little is known about how the brain learns and encodes the meaning of stimuli. We trained monkeys to classify 360 degrees of visual motion directions into two discrete categories, and compared neuronal activity in the lateral intraparietal (LIP) and middle temporal (MT) areas, two interconnected brain regions known to be involved in visual motion processing. Here we show that neurons in LIP--an area known to be centrally involved in visuo-spatial attention, motor planning and decision-making-robustly reflect the category of motion direction as a result of learning. The activity of LIP neurons encoded directions of motion according to their category membership, and that encoding shifted after the monkeys were retrained to group the same stimuli into two new categories. In contrast, neurons in area MT were strongly direction selective but carried little, if any, explicit category information. This indicates that LIP might be an important nexus for the transformation of visual direction selectivity to more abstract representations that encode the behavioural relevance, or meaning, of stimuli.  相似文献   

14.
在源的质心固定的视超光速模型的基础上 ,本文进一步推导出质心运动情况下视超光速运动的视速度方程。然后 ,在喷流方向与源的退行方向相反的情况下 ,推导出核与子源速率相等条件下及核固定条件下求子源真实速度的方程。质心运动情况下的视速度方程 ,包含了质心静止条件下的相对论超光速模型和著名的核固定的 BRM的视速度方程以及低速条件下的牛顿理论  相似文献   

15.
为了提高具有前景目标的动态场景视频的稳像效果,采用了一种基于块绝对差分的运动目标自动提取方法。在提取运动目标的基础上,提出通过自适应设定相关阈值的方法,来预判相关背景模块是否具有足够的信息,以减少用于运动矢量估计的模块数量。仿真实验结果表明,对于具有前景目标的动态场景视频,在减少运动目标提取时间的基础上,能够有效提高稳像算法的速度和精度,对实际视频取得了比较理想的稳像效果。  相似文献   

16.
Honeybee dances communicate distances measured by optic flow   总被引:5,自引:0,他引:5  
Esch HE  Zhang S  Srinivasan MV  Tautz J 《Nature》2001,411(6837):581-583
In honeybees, employed foragers recruit unemployed hive mates to food sources by dances from which a human observer can read the distance and direction of the food source. When foragers collect food in a short, narrow tunnel, they dance as if the food source were much farther away. Dancers gauge distance by retinal image flow on the way to their destination. Their visually driven odometer misreads distance because the close tunnel walls increase optic flow. We examined how hive mates interpret these dances. Here we show that recruited bees search outside in the direction of the tunnel at exaggerated distances and not inside the tunnel where the foragers come from. Thus, dances must convey information about the direction of the food source and the total amount of image motion en route to the food source, but they do not convey information about absolute distances. We also found that perceived distances on various outdoor routes from the same hive could be considerably different. Navigational errors are avoided as recruits and dancers tend to fly in the same direction. Reported racial differences in honeybee dances could have arisen merely from differences in the environments in which these bees flew.  相似文献   

17.
P Neri  A J Parker  C Blakemore 《Nature》1999,401(6754):695-698
Our two eyes obtain slightly different views of the world. The resulting differences in the two retinal images, called binocular disparities, provide us with a stereoscopic sense of depth. The primary visual cortex (V1) contains neurons that are selective for the disparity of individual elements in an image, but this information must be further analysed to complete the stereoscopic process. Here we apply the psychophysical technique of reverse correlation to investigate disparity processing in human vision. Observers viewed binocular random-dot patterns, with 'signal' dots in a specific depth plane plus 'noise' dots with randomly assigned disparities. By examining the correlation between the observers' ability to detect the plane and the particular sample of 'noise' disparities presented on each trial, we revealed detection 'filters', whose disparity selectivity was remarkably similar to that of individual neurons in monkey V1. Moreover, if the noise dots were of opposite contrast in the two eyes, the tuning inverted, just like the response patterns of V1 neurons. Reverse correlation appears to probe disparity processing at the earliest stages of binocular combination, prior to the generation of a full stereoscopic depth percept.  相似文献   

18.
为了解决传统方法在人群密集遮挡情况下无法满足检测要求,以及针对正常运动块的加速度改变,容易误检测为差异运动块的问题,通过光流法研究篮球图像运动块差异自主检测问题。分析光流法方程,通过篮球图像序列中像素强度数据的时域改变与相关性判断运动块像素的变化。通过码本模型对篮球图像前景位置进行提取,避免人群遮挡干扰,在前景位置处找到特征点。获取目标特征点后,通过光流法对运动块进行跟踪,针对全部能够被跟踪的运动块,引入光流运动方向数据;把光流运动方向在相同角度区间中的特征点当成一组数据完成归一化处理,降低对正常运动块的误判断,增强检测精度。对各区间中光流加速度进行高斯滤波处理,把各角度区间加速度累加,将其当成篮球图像加速度,设定累积加速度阈值,在图像块累积加速度高于设定阈值的情况下,认为出现差异情况。结果表明,所提方法能够检测遮挡背景下篮球图像运动块差异,NMI与LODF值均较大。说明所提方法满足遮挡情况下运动块差异检测要求,检测结果准确,不容易出现误检测现象。  相似文献   

19.
Nadler JW  Angelaki DE  DeAngelis GC 《Nature》2008,452(7187):642-645
Perception of depth is a fundamental challenge for the visual system, particularly for observers moving through their environment. The brain makes use of multiple visual cues to reconstruct the three-dimensional structure of a scene. One potent cue, motion parallax, frequently arises during translation of the observer because the images of objects at different distances move across the retina with different velocities. Human psychophysical studies have demonstrated that motion parallax can be a powerful depth cue, and motion parallax seems to be heavily exploited by animal species that lack highly developed binocular vision. However, little is known about the neural mechanisms that underlie this capacity. Here we show, by using a virtual-reality system to translate macaque monkeys (Macaca mulatta) while they viewed motion parallax displays that simulated objects at different depths, that many neurons in the middle temporal area (area MT) signal the sign of depth (near versus far) from motion parallax in the absence of other depth cues. To achieve this, neurons must combine visual motion with extra-retinal (non-visual) signals related to the animal's movement. Our findings suggest a new neural substrate for depth perception and demonstrate a robust interaction of visual and non-visual cues in area MT. Combined with previous studies that implicate area MT in depth perception based on binocular disparities, our results suggest that area MT contains a more general representation of three-dimensional space that makes use of multiple cues.  相似文献   

20.
基于时空视频块的背景建模   总被引:2,自引:1,他引:1  
提出了一种基于时空视频块的背景建模方法,时空视频块同时包含空间表观信息和时间运动信息.一个给定的背景位置在所有可能光照条件下的时空视频块集中位于一个低维的背景子空间中,而运动前景的时空视频块散布在背景子空间外的整个高维视频块空间中,采用一种高效的在线子空间学习算法实时更新背景子空间的主成分,根据时空视频块到背景子空间的距离来区分背景时空视频块和前景时空视频块.实验结果显示,本文中提出的方法能够在光照剧烈变化、前景与背景对比度较低的情况下准确地检测出前景目标.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号