首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
增塑纺丝作为一种新型的聚丙烯腈基碳纤维原丝的制备方法受到了广泛关注。该制备方法采用较少溶剂,纤维结构容易控制;但制备方法对纺丝设备以及工艺技术的要求高,尚未被应用于工业化。本文将对目前的增塑纺丝研究现状进行全面总结,同时,对未来的研究方向进行展望。  相似文献   

2.
以离子液体1-丁基-3-甲基咪唑四氟硼酸盐(IL)为醋酸丁酸纤维素(CAB)的增塑剂进行熔融纺丝.经IL增塑后,CAB的玻璃化转变温度和表观黏度下降,熔融指数升高,表明IL对CAB具有良好的增塑效果,这使得CAB的纺丝加工窗口得以拓宽,可纺性得到改善.热重分析结果表明,IL使CAB的热稳定性下降.纤维水洗试验结果表明,水洗可将CAB纤维中的IL脱除.  相似文献   

3.
采用以二甲基亚砜(DMSO)为溶剂的连续溶液聚合和一步湿法纺丝技术,在10t/a中试实验装置上成功地制备了碳纤维用聚丙烯腈(PAN)原丝批量产品。通过不断地优化聚合和纺丝工艺条件,实现了PAN原丝的中试稳定化。实验结果表明,采用连续溶液聚合技术在实现单体高度转化的同时获得了高分子量的PAN共聚物,通过调整凝固成型工艺条件和牵伸配比制备了具有圆形截面且结构致密的高取向度PAN原丝。将批量PAN原丝产品进行预氧化、低温碳化和高温碳化后.获得PAN基碳纤维,其束丝强度、模量和断裂伸长率的平均值分别达到3.74GPa,223GPa和1.7%。  相似文献   

4.
为了提高聚丙烯腈(PAN)纤维的抗静电性能,以聚丙烯腈原丝为基料,N,N-二甲基乙酰胺(DMAC)为溶剂配制了聚丙烯腈纺丝液。然后通过超声波及机械搅拌的方法将不同质量分数的导电性能良好的纳米氧化锌(Zn O)分散在聚丙烯腈纺丝液中,配制成PAN/Zn O二元复合纺丝液,采用高压静电纺丝技术制备具有抗静电性能的PAN/Zn O纳米复合纤维。研究了PAN纺丝液、PAN/Zn O二元复合纺丝液的可纺性以及不同质量分数的纳米氧化锌对PAN/Zn O纳米复合纤维膜的结晶度及体积比电阻的影响。结果表明:纺丝液的可纺性较好,在体积分数为12%,纺丝电压为18k V,接收距离为15 cm,推进速度为0.000 5 mm/s的条件下进行静电纺丝,可以得到纤维直径均匀,纤维平行伸直度良好,表面光滑的PAN纳米纤维;随着纳米氧化锌质量分数的提高,PAN/Zn O纳米复合纤维表面变得粗糙,但结晶度无明显变化,体积比电阻减小,抗静电性能提高。  相似文献   

5.
聚丙烯腈原丝微结构的X射线衍射分析   总被引:10,自引:0,他引:10  
通过X射线二维衍射图像和2θ扫描法对四种不同的国内外聚丙烯腈原丝进行了结构表征,探讨了不同PAN纤维在微观结构上的差异,为深入分析PAN原丝的序态结构和了解其结构性能关系、进一步提高原丝的质量提供了依据。  相似文献   

6.
利用静电纺丝法制备了聚丙烯腈(PAN)无序微纳米纤维膜,通过控制纺丝电压,溶液浓度和进料速率并借助接触角测量仪和扫描电子显微镜(SEM)对微纳米纤维材料的纤维形貌和润湿性进行了表征和研究.结果表明,对于PAN无序微纳米纤维膜,增大纺丝电压、减小进料速率、增大溶液浓度会使微纳米纤维膜的纤维直径增大;增大纺丝电压,减小进料速率会使微纳米纤维膜接触角增大;增大浓度,会使微纳米纤维膜接触角先增大后减小.通过控制变量法对PAN无序微纳米纤维膜分析得出,相对高的纺丝电压(14 k V)和相对低的进料速率(0.50m L·h-1)以及适中的PAN溶液浓度(12%wt)可以提升PAN无序微纳米纤维膜的疏水性.此外,均匀的PAN纤维膜的微纳米结构是影响它疏水性的重要因素.  相似文献   

7.
研究了聚丙烯腈及其共聚物在水增塑条件下的熔融规律,并在经过改造的φ20mm螺杆熔融纺丝机上进行了纺丝工艺研究。研究表明,聚丙烯腈树脂在一定量的水和热的作用下,由于大分子中氰基之间的作用力被拆散或减弱,可使其变成可进行纺丝成形的增塑熔体;不同含水量、不同组成、不同相对分子质量的聚合体具有不同的水增塑熔点;所纺制的纤维都具有较好的物理机械性能。  相似文献   

8.
研究了高相对分子质量PAN纺丝溶液的制备工艺,讨论了影响纺丝溶液的流动曲线、非牛顿指数、结构粘度指数、孔口膨化比等的主要因素,为确定合理的PAN基碳纤维原丝生产工艺提供了科学依据.  相似文献   

9.
采用聚丙烯腈/N,N-二甲基甲酰胺/多氨基超支化聚合物三元体系为纺丝液,通过静电纺丝制备了PAN/HBP复合超细纤维,探讨了聚丙烯腈浓度、超支化聚合物含量、纺丝电压、接收距离和推进速度等因素对复合纤维直径和形貌的影响.结果表明,增大PAN浓度和增加HBP含量,都会使纤维直径增大;静电纺丝电压增大,可以减小纤维直径;适当的接收距离和推进速度才可以获得直径细而均匀的纤维.通过对PAN/HBP复合超细纤维的氨基含量测试和FTIR分析,进一步证实了PAN/HBP复合纤维表面和内部氨基的存在.  相似文献   

10.
预氧化阶段是制备活性炭纤维的关键步骤,为了得到均质和力学性能优良的预氧化纤维,采用液相预氧化法制备了聚丙烯腈(PAN)预氧化纤维.研究了PAN原丝在不同时间和温度液相预氧化条件下力学性能的变化,并采用红外光谱、扫描电镜等对纤维的结构和性能进行了分析.结果表明:随着预氧化的时间和温度的增加,纤维的预氧化程度提高,强力降低...  相似文献   

11.
采用干一湿法纺丝,制得性能良好的聚丙烯腈(PAN)中空纤维膜。分析了纺丝工艺对 PAN中空纤维超滤膜性能的影响。实验证明增加干纺程长度有利于改善 PAN 膜的的超滤性能。研究表明 PAN 中空纤维是一种具有多空基质的不对称膜,存在紧密的皮层,改变纺丝过程中的挤出速率、填充液压力、卷绕速率和拉伸倍数可以调节中空纤维的内外径和壁厚。  相似文献   

12.
对用几种方法制取的高纯度PAN原丝进行了分析对比,选取了以无碱金属引发体系的HNO_3溶液聚合工艺制得原液并纺制了碱金属及碱土金属总含量小于100ppm的高纯级PAN原丝。将其与其余三种一般纯度的PAN纤维以同样氧化、碳化工艺制得了碳纤维,并以密度、质量比电阻、X—光衍射、扫描电子显微镜、热分析及原子吸收光谱等方法研究了高纯碳丝及原丝的特点。  相似文献   

13.
以聚丙烯腈(PAN)和N,N-二甲基甲酰胺(DMF)为原料,通过静电纺丝-CO2活化法制备PAN基活性碳纳米纤维,探讨活化温度对活性碳纳米纤维孔结构及孔径分布的影响,并研究了所制备的PAN基活性碳纳米纤维对亚甲基蓝(MB)的吸附性能.结果表明,随着活化温度的升高,PAN基活性碳纳米纤维的比表面积(SBET)、总孔容(Vtotal)和微孔容(Vmi)均增大,当活化温度达到950℃时,SBET、Vtotal、Vαmi、Vtmi和VDmi分别高达1 484.5 m2·g-1、0.709 cm3·g-1、0.680 cm3·g-1、0.666 cm3·g-1和0.659cm3·g-1;Langmuir模型较Freundlich模型更适合描述所制备的PAN基活性碳纳米纤维对MB的吸附过程,且ACF950在(25±1)℃对MB的饱和吸附量高达270 mg·g-1.  相似文献   

14.
高分子量PAN溶液流变性质的研究   总被引:1,自引:0,他引:1  
用高分子量PAN聚合体进行纺丝是提高PAN基碳纤维原丝强度的一条主要途径,但高分子量PAN聚合体的溶解往往不完全,可纺性差,本采用实验室自制设备对高分子量PAN聚合体进行了溶解,通过对所得溶液流变性质的研究发现该溶液可纺性良好。  相似文献   

15.
预氧化阶段是制备活性炭纤维的关键步骤,为了得到均质和力学性能优良的预氧化纤维,采用液相预氧化法制备了聚丙烯腈(PAN)预氧化纤维.研究了PAN原丝在不同时间和温度液相预氧化条件下力学性能的变化,并采用红外光谱、扫描电镜等对纤维的结构和性能进行了分析.结果表明:随着预氧化的时间和温度的增加,纤维的预氧化程度提高,强力降低;预氧化纤维表面光滑,结构均匀,截面无皮芯结构.  相似文献   

16.
 综述了近年来高性能聚丙烯腈(PAN)基碳纤维的研究进展,对PAN聚合、原丝制备、预氧化和碳化过程中最为关键的问题进行了总结:(1)聚合工艺对共聚单体在PAN分子链上的分布和溶液的均匀性非常重要。与间歇聚合或半连续聚合工艺相比,连续溶液聚合工艺可以提供更稳定的纺丝溶液,减少聚合过程中微凝胶的产生,并提高PAN原丝乃至碳纤维的均匀性。(2)PAN溶液进行湿法或干湿法纺丝过程中,相分离过程控制对PAN原丝及其碳纤维中微缺陷形成和发展,微缺陷的含量至关重要,并最终影响碳纤维的性能。干燥和牵伸工艺对于优化PAN碳纤维原丝的结晶和取向结构,制备高品质的碳纤维原丝同样起决定作用。(3)预氧化的升温速度、最高预氧化温度和预氧化张力控制对预氧丝的皮芯结构、环化指数及其对后续碳化工序的顺利进行产生重要的影响并影响碳纤维的性能;碳化的最高温度影响PAN基碳纤维的强度和模量。(4)碳纤维的结构与其性能具有直接相关性,中国对相关研究仍然比较缺乏,碳纤维生产技术水平和自主创新能力仍然不足。  相似文献   

17.
将三聚氰胺甲醛(MF)溶液与聚丙烯腈(PAN)溶液共混,采用湿法纺丝制备MF/PAN纤维.由光学显微镜、旋转黏度仪、元素分析仪、能谱仪(EDS)等测定可知,当MF/PAN混合溶液在60℃下反应时间为16h,三聚氰胺与甲醛摩尔比(M/F)为1∶3时,溶液性能最佳.湿法纺丝时调节喷头拉伸率和沸水拉伸倍数,制得了不同的MF/PAN纤维,并采用红外光谱仪、元素分析仪、极限氧指数(LOI)仪、扫描电子显微镜、热重分析仪和纤维强伸度仪对制得的纤维结构和性能进行表征.发现:当喷头拉伸率为-50%、沸水拉伸倍率为3.0时,制得的MF/PAN纤维具有较高的力学性能和优异的阻燃性能,即纤维拉伸断裂强度为1.17cN/dtex,断裂伸长率为8.80%,纤维极限氧指数达34.2%.  相似文献   

18.
增塑纺丝是制备聚丙烯腈纤维的一种新型工艺,通常采用水溶性离子液体——1-丁基-3-甲基咪唑氯盐([Bmim]Cl)作为增塑剂。纤维性能受到纺丝速度、甬道温度、喷丝板孔径、喷丝板孔数及水浴牵伸倍数等纺丝工艺的影响,本文将从纺丝速度及水浴牵伸倍数角度分析其对纤维性能的影响。实验结果表明,随着纺丝速度的增加,纤维初始模量及断裂强度呈现一个先增加、后降低的趋势;随着牵伸倍数的增加,纤维力学性能逐渐优化,但存在一个最优值。  相似文献   

19.
纺织工程专业本科实验教学从自身专业特色出发,不断强化产业、工程实践能力训练,逐步推进实验教学改革,已将熔法纺丝、湿法纺丝、静电纺丝等纤维生产工艺,作为综合实验项目系统化引入本科生专业实验课程。熔融纺丝作为最常见的纤维生产工艺之一,因其工艺简单,成本较低,无溶剂回收等问题,较早得到广泛应用。聚丙烯纤维熔法纺丝实验采用聚丙烯切片为原料,切片经过熔融纺丝机组进行熔融、纺丝,让学生进一步熟悉熔法纺丝机组构成以及纺丝工艺参数设置;将纺得的初生纤维进行截面观察,拉伸性能测试,引导学生分析纺丝拉伸倍数对其结果的影响规律及原因。  相似文献   

20.
静电纺丝聚丙烯腈纳米纤维工艺参数与纤维直径关系的研究   总被引:12,自引:1,他引:12  
采用静电纺丝方法来纺制聚丙烯腈(PAN)纳米纤维毡研究了质量分数、电压、针孔孔径、纺丝液中LCl的含量、接受距离等参数对纤维直径及离散度的影响,采用扫描电镜来观察纤维的直径及其形态。采用正交试验设计法,发现纺丝液的质量分数与纺丝液中LiCl的含量是影响纤维直径最重要的参数。经过优化,纺制出最小直径为98nm的纳米纤维。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号